結果

問題 No.459 C-VS for yukicoder
ユーザー maimai
提出日時 2017-03-15 21:45:45
言語 C++14
(gcc 13.2.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 13,850 bytes
コンパイル時間 1,942 ms
コンパイル使用メモリ 191,160 KB
実行使用メモリ 23,348 KB
最終ジャッジ日時 2023-09-17 03:41:27
合計ジャッジ時間 14,603 ms
ジャッジサーバーID
(参考情報)
judge15 / judge13
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,376 KB
testcase_01 AC 2 ms
4,376 KB
testcase_02 AC 2 ms
4,380 KB
testcase_03 AC 2 ms
4,376 KB
testcase_04 AC 1 ms
4,376 KB
testcase_05 AC 1 ms
4,376 KB
testcase_06 AC 1 ms
4,376 KB
testcase_07 AC 1 ms
4,376 KB
testcase_08 AC 1 ms
4,376 KB
testcase_09 AC 2 ms
4,380 KB
testcase_10 AC 1 ms
4,376 KB
testcase_11 AC 2 ms
4,376 KB
testcase_12 AC 1 ms
4,380 KB
testcase_13 AC 2 ms
4,376 KB
testcase_14 AC 1 ms
4,376 KB
testcase_15 AC 14 ms
4,380 KB
testcase_16 AC 9 ms
4,376 KB
testcase_17 AC 2 ms
4,380 KB
testcase_18 AC 2 ms
4,376 KB
testcase_19 AC 2 ms
4,380 KB
testcase_20 AC 2 ms
4,380 KB
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 AC 7 ms
4,968 KB
testcase_33 RE -
testcase_34 RE -
testcase_35 AC 23 ms
4,752 KB
testcase_36 RE -
testcase_37 AC 16 ms
4,376 KB
testcase_38 RE -
testcase_39 AC 21 ms
4,376 KB
testcase_40 RE -
testcase_41 AC 5 ms
4,916 KB
testcase_42 RE -
testcase_43 RE -
testcase_44 RE -
testcase_45 RE -
testcase_46 AC 42 ms
4,380 KB
testcase_47 AC 17 ms
4,380 KB
testcase_48 RE -
testcase_49 AC 9 ms
4,784 KB
testcase_50 RE -
testcase_51 AC 10 ms
4,868 KB
testcase_52 RE -
testcase_53 AC 51 ms
4,508 KB
testcase_54 RE -
testcase_55 RE -
testcase_56 RE -
testcase_57 AC 6 ms
4,908 KB
testcase_58 RE -
testcase_59 RE -
testcase_60 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include"bits/stdc++.h"

using namespace std;
typedef unsigned int uint;
typedef long long int ll;
typedef unsigned long long int ull;

#define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;
#define debugm(m) printf("L%d %s is..\n",__LINE__,#m);for(auto v:m){for(auto e:v){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) printf("L%d %s is => ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;
#define debugaa(m,w,h) printf("L%d %s is..\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[x][y]<<" ";}cout<<endl;}
#define debugaar(m,w,h) printf("L%d %s is..\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}
#define ALL(v) (v).begin(),(v).end()
#define BIGINT 0x7FFFFFFF
#define E107 1000000007ll
void printbit(int u) { if (u == 0)cout << 0; else { int s = 0, k = 0; for (; 0<u; u >>= 1, k++)s = (s << 1) | (u & 1); for (; 0<k--; s >>= 1)cout << (s & 1); } }

#define TIME chrono::system_clock::now()
#define MILLISEC(t) (chrono::duration_cast<chrono::milliseconds>(t).count())
namespace {
    std::chrono::system_clock::time_point t;
    void tic() { t = TIME; }
    void toc() { fprintf(stderr, "TIME : %lldms\n", MILLISEC(TIME - t)); }
    std::chrono::system_clock::time_point tle = TIME;
    void safe_tle(int msec) { assert(MILLISEC(TIME - tle) < msec); }
}

template<typename T1, typename T2>
ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }


void safebreak() { static auto t = TIME; assert(MILLISEC(TIME - t) < 5000); }

namespace std {
    template<typename T1, typename T2>
    class hash<pair<T1, T2>> {
    public:
        size_t operator()(const pair<T1, T2>& x) const {
            return hash<T1>()(x.first) ^ hash<T2>()(x.second);
        }
    };
}
// todo : typedef int_c int // capacity

// TODO:マーカーの実装?
class Flow {
public:
    size_t n;
    struct Arrow {
        int from, to;
        int dual; // 相手(逆方向)のArrowID
        int capleft;
        int cap;

        Arrow(int from = 0, int to = 0, int dual = 0, int left = 1, int cap = 1) :from(from), to(to), dual(dual), capleft(left), cap(cap) {}
    };
    vector<vector<int>> vertex_to;
    vector<vector<int>> vertex_from; // TODO: いらない
    vector<Arrow> arrow;

    Flow(int n, int m = 5010) :n(n), vertex_to(n), vertex_from(n) { arrow.reserve(m); }

    void connect(int from, int to, int w_max) {
        int id = arrow.size();
        vertex_to[from].push_back(id);
        vertex_from[to].push_back(id);
        arrow.emplace_back(from, to, id + 1, w_max, w_max);
        vertex_to[to].push_back(id + 1);     // 逆方向のArrowも追加する
        vertex_from[from].push_back(id + 1); // この辺のidは必ず奇数
        arrow.emplace_back(to, from, id, 0, w_max);
    }
    size_t degree(int v) {
        return vertex_to[v].size() + vertex_from[v].size();
    }
    size_t degree_in(int v) {
        return vertex_from[v].size();
    }
    size_t degree_out(int v) {
        return vertex_to[v].size();
    }
};
// DAG
int _dinic_tree_dfs(Flow& flow, vector<bool>& flag, const vector<int>& dist, int u, int i_sink, int mini) {
    safe_tle(50);

    if (i_sink == u) return mini;
    int sumw = 0;
    bool term = true;
    for (int e : flow.vertex_to[u]) {
        Flow::Arrow& a = flow.arrow[e];
        if (a.capleft > 0 && dist[u]>dist[a.to]) {
            int w;
            if (mini < 0)
                w = a.capleft;
            else
                w = min(a.capleft, mini);

            w = _dinic_tree_dfs(flow, flag, dist, a.to, i_sink, w);
            if (w == -1) continue;
            a.capleft -= w;
            flow.arrow[a.dual].capleft += w;

            //printf("%d->%d (%d) : w=%d mini=%d \n",a.from,a.to,a.left+w,w,mini);

            sumw += w;
            mini -= w;
            term = false;
        }
    }
    return term ? -1 : sumw;
}
int _dinic_path_dfs(Flow& flow, vector<bool>& flag, const vector<int>& dist, int u, int i_sink, int mini) {
    safe_tle(50);

    if (mini == 0) return 0;
    if (i_sink == u) return mini;

    for (int e : flow.vertex_to[u]) {
        Flow::Arrow& a = flow.arrow[e];
        if (a.capleft > 0 && dist[u]>dist[a.to]) {
            int w;
            if (mini < 0)
                w = a.capleft;
            else
                w = min(a.capleft, mini);

            w = _dinic_path_dfs(flow, flag, dist, a.to, i_sink, w);
            if (w <= 0) continue;
            a.capleft -= w;
            flow.arrow[a.dual].capleft += w;

            return w;
        }
    }
    return 0;
}

// 各頂点に流れる流量の演算を消去
// flowは書き換えられる.
void dinic(Flow &flow, int i_source, int i_sink) {
    assert(i_source != i_sink);

    int distbegin = 0;
    vector<int> dist(flow.n);
    queue<int> q;
    vector<bool> flag(flow.n);
    for (int distbegin = 0; ; distbegin += flow.n) {

        // for (int i = 0; i < flow.arrow.size(); ++i) {
        //     if (i % 2 == 0) {
        //         Flow::Arrow a = flow.arrow[i];
        //         printf("%d->%d : %d\n", a.from, a.to, a.capleft);
        //     }
        // }
        // for (int i = 0; i < flow.arrow.size(); ++i) {
        //     if (i % 2 == 1) {
        //         Flow::Arrow a = flow.arrow[i];
        //         printf("%d->%d :R%d\n", a.from, a.to, a.capleft);
        //     }
        // }

        q.emplace(i_sink); // bfsはsinkからsourceへの距離を計算.
        dist[i_sink] = distbegin + 1;
        while (!q.empty()) {
            int v = q.front();
            q.pop();
            for (int ie : flow.vertex_from[v]) {
                const Flow::Arrow& e = flow.arrow[ie];
                if (0<e.capleft && dist[e.from] <= distbegin) {
                    dist[e.from] = dist[v] + 1;
                    q.emplace(e.from);
                }
            }
        }
        //debugv(dist);
        fill(ALL(flag), false);

        if (dist[i_source] <= distbegin) {
            break;
        }
        else {
            while (_dinic_path_dfs(flow, flag, dist, i_source, i_sink, -1) > 0) ;
            // if (_dinic_tree_dfs(flow, flag, dist, i_source, i_sink, -1) <= 0) break;
        }
    }

}

// 最大最小流量制限付き
class FlowMinMax {
public:
    Flow flow;
    int ss; // vertex of new source

    FlowMinMax(int n, int m) :flow(n + 2, m), ss(n) {}
    FlowMinMax(int n) :flow(n + 2), ss(n) {}

    void connect(int from, int to, int w_min, int w_max) {
        // assert(w_min < w_max);
        /*
        flow.connect(from, ss+1, w_min);
        flow.connect(from, to  , w_max-w_min);
        flow.connect(ss  , to  , w_min);
        return;
        */

        if (w_max == w_min) {
            flow.connect(ss, to, w_min);
            flow.connect(from, ss + 1, w_min);
        }
        else if (w_min == 0) {
            flow.connect(from, to, w_max - w_min);
        }
        else {
            flow.connect(from, ss + 1, w_min);
            flow.connect(from, to, w_max - w_min);
            flow.connect(ss, to, w_min);
        }
    }
private:
    template<typename MAP_PI> // map<pair<int,int>,int> or unordered_map
    bool _solve_dinic_edge(MAP_PI& result_edge, int i_source, int i_sink) {

        dinic(flow, ss, ss + 1);
        dinic(flow, ss, i_sink);
        dinic(flow, i_source, ss + 1);
        dinic(flow, i_source, i_sink);

        for (int e : flow.vertex_from[ss + 1]) {
            const Flow::Arrow& a = flow.arrow[e];
            //printf("%d->%d (%d)\n",a.from,a.to,a.w_max);cout.flush();
            if (0 < a.capleft) return false;
        }
        int floow;
        for (int u = 0; u<flow.n - 2; u++) {
            for (int ea : flow.vertex_to[u]) { // TODO:無駄っぽい(2回参照)
                const Flow::Arrow& a = flow.arrow[ea]; // u -> v
                if (a.to >= flow.n - 2) {
                    if (0 < a.capleft) return false;
                    continue;
                }

                const Flow::Arrow& c = flow.arrow[ea + 2]; // S -> v
                if (a.to != c.to) {
                    floow = a.cap - a.capleft;
                }
                else {
                    if (0 < c.capleft) return false;
                    floow = c.cap + a.cap - c.capleft - a.capleft;
                }
                if (0 < floow)
                    result_edge[make_pair(u, a.to)] += floow;
            }
        }
        return true;
    }
    // connect操作を行うので,2回以上呼び出すのは禁止
    // sumflow = sink,flowの流量が既知
    template<typename MAP_PI>
    bool _solve_dinic_edge_known(MAP_PI& result_edge, int i_source, int i_sink, int sumflow) {

        flow.connect(ss, i_source, sumflow);
        flow.connect(i_sink, ss + 1, sumflow);

        dinic(flow, ss, ss + 1);

        for (int e : flow.vertex_from[ss + 1]) {
            if (e % 2 == 1) continue; // is dual edge?
            const Flow::Arrow& a = flow.arrow[e];
            //printf("%d: %d->%d (%d)\n",e,a.from,a.to,a.capleft);cout.flush();
            if (0 < a.capleft) return false;
        }
        int floow;
        for (int u = 0; u<flow.n - 2; u++) {
            for (int ea : flow.vertex_to[u]) { // TODO:無駄っぽい(2回参照)
                if (ea % 2 == 1) continue; // is dual edge?
                const Flow::Arrow& a = flow.arrow[ea]; // u -> v
                if (a.to >= flow.n - 2) {
                    if (0 < a.capleft) return false;
                    continue;
                }
                const Flow::Arrow& c = flow.arrow[ea + 2]; // S -> v
                if (a.to != c.to) {
                    floow = a.cap - a.capleft;
                }
                else {
                    if (0 < c.capleft) return false;
                    floow = c.cap + a.cap - c.capleft - a.capleft;
                }
                if (0 < floow)
                    result_edge[make_pair(u, a.to)] += floow;
            }
        }
        return true;
    }

public:
    bool solve_dinic_edge(map<pair<int, int>, int>& result_edge, int i_source, int i_sink, int sumflow = -1) {
        return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink)
            : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow);
    }
    bool solve_dinic_edge(unordered_map<pair<int, int>, int>& result_edge, int i_source, int i_sink, int sumflow = -1) {
        return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink)
            : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow);
    }

};

/**
// dinic sample
int main(){
    int i,j,k;
    int x,y,a,b;

    Flow graph(6);

    graph.connect(0,1,1);
    graph.connect(1,4,1);
    graph.connect(4,5,1);
    graph.connect(0,3,1);
    graph.connect(3,4,1);
    graph.connect(1,2,1);
    graph.connect(2,5,1);

    //vector<int> result(6,0);
    dinic(graph,0,5);

    //debugv(result);

    for (int i = 0; i < graph.arrow.size(); ++i) {
        if (i % 2 == 0) {
            Flow::Arrow a = graph.arrow[i];
            printf("%d->%d : %d\n", a.from, a.to, a.capleft);
        }
    }

    // FlowMinMax graph2(3);
    //
    // graph2.connect(0,1,1,2);
    // graph2.connect(1,2,3,4);
    //
    // vector<int> result2(3,0);
    // cout << (graph2.solve_dinic(result2,0,2) ? "true" : "false") << endl;
    //
    // debugv(result2);

    return 0;
}
/**/
/**/

int width, height;
int m, n;

int field[10010];
int commands[30010];

int main() {
    int i, j, k;
    int x, y, a, b;

    tic();

    cin >> height >> width >> n;
    cin.ignore();

    int nblocks = 0;
    // X座標にブロックがいくつ積まれているか、を記録する。
    // stringを保持する必要はない。
    for (y = 0; y < height; y++) {
        string s;
        cin >> s;
        for (x = 0; x < width; x++) {
            field[x] += s[x] == '#';
        }
    }
    for (x = 0; x < width; x++) { nblocks += field[x]; }

    for (i = 0; i < n; i++) {
        scanf("%d", commands + i);
    }

    //          A   _    B    _   C
    //             | | ----> | | ----> [sink]
    // [source] -> | |       | |
    //             | |       | |
    //             |_pack    |_field
    // 
    // A : [1,9] (packは[1,9]個のブロックを持つ)
    // B : [0,3] (packは3x3の容量を持つ)
    // C : [#,#] (x列には#個のブロックが積み上がっている)

    FlowMinMax flow(1 + n + width + 1);

    const int i_source = 0;
    const int i_sink = 1;

    for (i = 0; i < n; i++) {
        // A edge
        flow.connect(i_source, 2 + i, 1, 9);
        int left = commands[i];
        for (j = 0; j < 3; j++) {
            // B edge
            flow.connect(2 + i, 2 + n + left + j, 0, 3);
        }
    }
    for (x = 0; x < width; x++) {
        // C edge
        flow.connect(2 + n + x, i_sink, field[x], field[x]);
    }

    //for (Flow::Arrow& ar : flow.flow.arrow){
    //    if (ar.w_max == 0) continue;
    //    printf("%d -> %d\n",ar.from,ar.to);
    //}

    unordered_map<pair<int, int>, int> nagare;
    if (!flow.solve_dinic_edge(nagare, i_source, i_sink, nblocks)) {
cout << "hage" << endl;exit(0);
        cerr << "ABORT" << endl;
        abort();
        cout << "warn" << endl;
    }

    //debugv(nagare);

    int hako[3];
    for (i = 0; i < n; i++) {
        for (j = 0; j < 3; j++) {
            hako[j] = nagare[make_pair(2 + i, 2 + n + commands[i] + j)];
        }
        for (y = 3; 0 < y; y--) {
            for (x = 0; x < 3; x++) {
                if (y <= hako[x]) {
                    putchar('#');
                }
                else {
                    putchar('.');
                }
            }
            putchar('\n');
        }
    }

    toc();

    return 0;
}

/*
2 4 3
..#.
..##
0
1
0
*/
0