#include using namespace std; typedef unsigned int uint; typedef long long int ll; typedef unsigned long long int ull; #define debugv(v) printf("L%d %s => ",__LINE__,#v);for(auto e:v){cout< ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<>=1,k++)s=(s<<1)|(u&1);for(;0>=1)cout<<(s&1);}} #define TIME chrono::system_clock::now() #define MILLISEC(t) (chrono::duration_cast(t).count()) namespace{ std::chrono::system_clock::time_point t; void tic(){t=TIME;} void toc(){fprintf(stderr,"TIME : %lldms\n",MILLISEC(TIME-t));} } template ostream& operator <<(ostream &o,const pair p){o<<"("< class hash> { public: size_t operator()(const pair& x) const{ return hash()(x.first)^hash()(x.second); } }; } class Flow { public: size_t n; struct Arrow { int from, to; int left; int cap; Arrow(int from = 0, int to = 0, int w = 1) :from(from), to(to), left(w), cap(w) {} bool operator<(const Arrow& a) const { return (from> vertex_to; vector> vertex_from; vector arrow; Flow(int n, int m = 5010) :n(n), vertex_to(n), vertex_from(n) { arrow.reserve(m); } void connect(int from, int to, int left) { vertex_to[from].push_back(arrow.size()); // toto vertex_from[to].push_back(arrow.size()); // fromfrom arrow.emplace_back(from, to, left); } size_t degree(int v) { return vertex_to[v].size() + vertex_from[v].size(); } size_t degree_in(int v) { return vertex_from[v].size(); } size_t degree_out(int v) { return vertex_to[v].size(); } }; int _fordFulkerson_path_dfs(Flow& flow, vector& result, vector& visit, int u, int i_sink, int mini) { if (i_sink == u) return mini; int sumw = 0; bool term = true; visit[u] = true; for (int e : flow.vertex_to[u]) { Flow::Arrow& a = flow.arrow[e]; if (a.left > 0 && !visit[a.to]) { int w; if (mini < 0) w = a.left; else w = min(a.left, mini); w = _fordFulkerson_path_dfs(flow, result, visit, a.to, i_sink, w); if (w == -1) continue; a.left -= w; result[a.to] += w; //printf("%d->%d (%d) : w=%d mini=%d \n",a.from,a.to,a.left+w,w,mini); sumw += w; mini -= w; term = false; } } for (int e : flow.vertex_from[u]) { Flow::Arrow& a = flow.arrow[e]; if (a.cap > a.left && !visit[a.from]) { int w; if (mini < 0) w = a.cap - a.left; else w = min(a.cap - a.left, mini); w = _fordFulkerson_path_dfs(flow, result, visit, a.from, i_sink, w); if (w == -1) continue; a.left += w; result[a.to] -= w; //printf("%d<-%d (%d) : w=%d mini=%d \n",a.from,a.to,a.left-w,w,mini); sumw += w; mini -= w; term = false; } } visit[u] = false; return term ? -1 : sumw; } // flowは書き換えられる. void fordFulkerson(Flow &flow, vector& result, int i_source, int i_sink) { assert(i_source != i_sink); result.resize(flow.n); vector visit(flow.n); int res = 1; while (0 <= res) { fill(ALL(visit), false); res = _fordFulkerson_path_dfs(flow, result, visit, i_source, i_sink, -1); result[i_source] += max(0, res); } } // 最大最小流量制限付き class FlowMinMax{ public: Flow flow; int ss; // vertex of new source FlowMinMax(int n,int m):flow(n+2,m),ss(n){} FlowMinMax(int n):flow(n+2),ss(n){} void connect(int from, int to, int w_min, int left){ // assert(w_min < left); /* flow.connect(from, ss+1, w_min); flow.connect(from, to , left-w_min); flow.connect(ss , to , w_min); return; */ if (left == w_min){ flow.connect(ss , to , w_min); flow.connect(from, ss+1, w_min); }else if (w_min == 0){ flow.connect(from, to , left-w_min); }else{ flow.connect(from, ss+1, w_min); flow.connect(from, to , left-w_min); flow.connect(ss , to , w_min); } } private: template // map,int> or unordered_map bool _solve_dinic_edge(MAP_PI& result_edge, int i_source, int i_sink){ vector resflow(flow.n,0); fordFulkerson(flow, resflow, ss , ss+1); fordFulkerson(flow, resflow, ss , i_sink); fordFulkerson(flow, resflow, i_source, ss+1); fordFulkerson(flow, resflow, i_source, i_sink); for (int e : flow.vertex_from[ss+1]){ const Flow::Arrow& a = flow.arrow[e]; //printf("%d->%d (%d)\n",a.from,a.to,a.left);cout.flush(); if (0 < a.left) return false; } int floow; for (int u=0; u v if (a.to >= flow.n-2){ if (0 < a.left) return false; continue; } const Flow::Arrow& c = flow.arrow[ea+1]; // S -> v if (a.to != c.to){ floow = a.cap - a.left; }else{ if (0 < c.left) return false; floow = c.cap + a.cap - c.left - a.left; } if (0 < floow) result_edge[make_pair(u,a.to)] += floow; } } return true; } // connect操作を行うので,2回以上呼び出すのは禁止 // sumflow = sink,flowの流量が既知 template bool _solve_dinic_edge_known(MAP_PI& result_edge, int i_source, int i_sink, int sumflow){ vector resflow(flow.n,0); flow.connect(ss, i_source, sumflow); flow.connect(i_sink, ss+1, sumflow); fordFulkerson(flow, resflow, ss , ss+1); for (int e : flow.vertex_from[ss+1]){ const Flow::Arrow& a = flow.arrow[e]; //printf("%d->%d (%d)\n",a.from,a.to,a.left);cout.flush(); if (0 < a.left) return false; } int floow; for (int u=0; u v if (a.to >= flow.n-2){ if (0 < a.left) return false; continue; } const Flow::Arrow& c = flow.arrow[ea+1]; // S -> v if (a.to != c.to){ floow = a.cap - a.left; }else{ if (0 < c.left) return false; floow = c.cap + a.cap - c.left - a.left; } if (0 < floow) result_edge[make_pair(u,a.to)] += floow; } } return true; } public: bool solve_dinic_edge(map,int>& result_edge, int i_source, int i_sink, int sumflow = -1){ return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink) : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow); } bool solve_dinic_edge(unordered_map,int>& result_edge, int i_source, int i_sink, int sumflow = -1){ return sumflow<0 ? _solve_dinic_edge(result_edge, i_source, i_sink) : _solve_dinic_edge_known(result_edge, i_source, i_sink, sumflow); } }; /** // dinic sample int main(){ int i,j,k; int x,y,a,b; Flow graph(6); graph.connect(0,1,1); graph.connect(1,4,1); graph.connect(4,5,1); graph.connect(0,3,1); graph.connect(3,4,1); graph.connect(1,2,1); graph.connect(2,5,1); vector result(6,0); dinic(graph,result,0,5); debugv(result); // FlowMinMax graph2(3); // // graph2.connect(0,1,1,2); // graph2.connect(1,2,3,4); // // vector result2(3,0); // cout << (graph2.solve_dinic(result2,0,2) ? "true" : "false") << endl; // // debugv(result2); return 0; } /**/ /**/ int width,height; int m,n; int field[10010]; int commands[30010]; int main(){ int i,j,k; int x,y,a,b; tic(); cin >> height >> width >> n; cin.ignore(); int nblocks=0; // X座標にブロックがいくつ積まれているか、を記録する。 // stringを保持する必要はない。 for (y = 0; y < height; y++){ string s; cin >> s; for (x = 0; x < width; x++){ field[x] += s[x]=='#'; } } for (x = 0; x < width; x++){ nblocks += field[x]; } for (i = 0; i < n; i++){ scanf("%d",commands+i); } // A _ B _ C // | | ----> | | ----> [sink] // [source] -> | | | | // | | | | // |_pack |_field // // A : [1,9] (packは[1,9]個のブロックを持つ) // B : [0,3] (packは3x3の容量を持つ) // C : [#,#] (x列には#個のブロックが積み上がっている) FlowMinMax flow(1 + n + width + 1); const int i_source = 0; const int i_sink = 1; for (i = 0; i < n; i++){ // A edge flow.connect(i_source, 2+i, 1, 9); int left = commands[i]; for (j = 0; j < 3; j++){ // B edge flow.connect(2+i, 2+n+ left+j, 0, 3); } } for (x = 0; x < width; x++){ // C edge flow.connect(2+n+x, i_sink, field[x], field[x]); } //for (Flow::Arrow& ar : flow.flow.arrow){ // if (ar.left == 0) continue; // printf("%d -> %d\n",ar.from,ar.to); //} unordered_map,int> nagare; if (!flow.solve_dinic_edge(nagare, i_source, i_sink, nblocks)){ abort(); cout << "warn" << endl; } //debugv(nagare); int hako[3]; for (i = 0; i < n; i++){ for (j = 0; j < 3; j++){ hako[j] = nagare[make_pair( 2+i, 2+n+ commands[i]+j )]; } for (y = 3; 0 < y; y--){ for (x = 0; x < 3; x++){ if (y<=hako[x]){ putchar('#'); }else{ putchar('.'); } } putchar('\n'); } } toc(); return 0; } /* 2 4 3 ..#. ..## 0 1 0 */