#include #define show(x) cerr << #x << " = " << x << endl using namespace std; using ll = long long; constexpr ll MOD = (ll)1e9 + 7LL; template class SegmentTree { public: using BaseAlgebra = Base; using AccMonoid = typename BaseAlgebra::AccMonoid; using OpMonoid = typename BaseAlgebra::OpMonoid; using T = typename BaseAlgebra::T; using F = typename BaseAlgebra::OpMonoid::T; SegmentTree(const int n) : data_num(n), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size, AccMonoid::identity()), action(size, OpMonoid::identity()) { assert(n > 0); } SegmentTree(const std::vector& val) : data_num(val.size()), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size), action(size, OpMonoid::identity()) { for (int data = 0; data < half; data++) { if (data < data_num) { value[data + half] = val[data]; } else { value[data + half] = AccMonoid::identity(); } } for (int node = half - 1; node >= 1; node--) { value[node] = acc(value[2 * node], value[2 * node + 1]); } } T get(const int a) const { assert(0 <= a and a < data_num); return accumulate(a, a + 1); } void set(const int a, const T& val) { assert(0 <= a and a < data_num); const int node = a + half; value[node] = val; for (int i = node / 2; i > 0; i /= 2) { value[i] = acc(value[2 * i], value[2 * i + 1]); } } void set(const int a, const T&& val) { assert(0 <= a and a < data_num); const int node = a + half; value[node] = val; for (int i = node / 2; i > 0; i /= 2) { value[i] = acc(value[2 * i], value[2 * i + 1]); } } T accumulate(const int a, const int b) const // Accumulate (a,b] { assert(0 <= a and a < b and b <= data_num); return accumulateRec(1, 0, half, a, b); } void modify(const int a, const int b, const F& f) // Apply f on (a,b] { assert(0 <= a and a < b and b <= data_num); if (f == OpMonoid::identity()) { return; } modifyRec(1, 0, half, a, b, f); } private: void modifyRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right, const F& f) { if (mod_left <= int_left and int_right <= mod_right) { value[int_index] = act(f, value[int_index]); action[int_index] = compose(f, action[int_index]); } else if (int_right <= mod_left or mod_right <= int_left) { // Do nothing } else { modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, 0, half, action[int_index]); modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right, f); modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, 0, half, action[int_index]); modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right, f); value[int_index] = acc(value[2 * int_index], value[2 * int_index + 1]); action[int_index] = OpMonoid::identity(); } } T accumulateRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right) const { if (mod_left <= int_left and int_right <= mod_right) { return value[int_index]; } else if (int_right <= mod_left or mod_right <= int_left) { return AccMonoid::identity(); } else { return act(action[int_index], acc(accumulateRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right), accumulateRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right))); } } const int data_num; // Num of valid data on leaves. const int height; const int size; const int half; vector value; // Tree for value(length: size) vector action; // Tree for action(length: half) bool has_lazy; const AccMonoid acc{}; const OpMonoid compose{}; const BaseAlgebra act{}; }; struct ProductSum_Nothing { using X = ll; using T = tuple; struct AccMonoid { T operator()(const T& a, const T& b) const { const ll A = get<0>(a); const ll B = get<1>(a); const ll C = get<2>(a); const ll D = get<0>(b); const ll E = get<1>(b); const ll F = get<2>(b); if (A == -1 and B == -1 and C == -1) { return b; } else if (D == -1 and E == -1 and F == -1) { return a; } if (A != -1 and C != -1) { // (*A+B+C) (*D+E+F) = *A+(B+CD+E)+F // (*A+B+C) (*D) = *A+B+CD // (*A+B+C) (+E+F) = *A+(B+C+E)+F if (D != -1 and F != -1) { return make_tuple(A, (B + C * D + E) % MOD, F); } else if (D != -1) { return make_tuple(A, B, C * D); } else { return make_tuple(A, (B + C + E) % MOD, F); } } else if (A != -1) { // (*A) (*D+E+F) = *AD+E+F // (*A) (*D) = *AD // (*A) (+E+F) = *A+E+F if (D != -1 and F != -1) { return make_tuple((A * D) % MOD, E, F); } else if (D != -1) { return make_tuple((A * D) % MOD, 0, -1); } else { return make_tuple(A, E, F); } } else { // (+B+C) (*D+E+F) = +(B+CD+E)+F // (+B+C) (*D) = +B+CD // (+B+C) (+E+F) = +(B+C+E)+F if (D != -1 and F != -1) { return make_tuple(-1, (B + C * D + E) % MOD, F); } else if (D != -1) { return make_tuple(-1, B, (C * D) % MOD); } else { return make_tuple(-1, (B + C + E) % MOD, F); } } } constexpr static T identity() { return make_tuple(-1, -1, -1); } }; struct OpMonoid { using T = X; T operator()(const T& f1, const T& f2) const { return f1 + f2; } static constexpr T identity() { return 0; } }; T operator()(const OpMonoid::T& /*f*/, const T& x) const { return x; } }; int main() { int N; cin >> N; const int NUM = (N + 1) / 2; const int OP = (N - 1) / 2; vector number(NUM, 0); vector op(OP + 1, true); for (int i = 0; i < N; i++) { char c; cin >> c; if (i % 2 == 0) { number[i / 2] = c - '0'; } else { op[(i + 1) / 2] = c == '*'; } } using T = tuple; vector value(NUM); for (int i = 0; i < NUM; i++) { value[i] = (op[i] ? make_tuple(number[i], -1, -1) : make_tuple(-1, 0, number[i])); } SegmentTree seg(value); int Q; cin >> Q; for (int i = 0; i < Q; i++) { char c; cin >> c; ll X, Y; cin >> X >> Y; cerr << c << " " << X << " " << Y << endl; if (c == '?') { X /= 2, Y /= 2; const auto ans = seg.accumulate(X, Y + 1); cout << (max(0LL, get<0>(ans)) + max(0LL, get<1>(ans)) + max(0LL, get<2>(ans))) % MOD << endl; } else { if (X % 2 == 1) { X /= 2, Y /= 2; const ll vx = op[X] ? get<0>(seg.get(X)) : get<2>(seg.get(X)); const ll vy = op[Y] ? get<0>(seg.get(Y)) : get<2>(seg.get(Y)); seg.set(X, (op[X] ? make_tuple(vy, -1LL, -1LL) : make_tuple(-1LL, 0LL, vy))); seg.set(Y, (op[Y] ? make_tuple(vx, -1LL, -1LL) : make_tuple(-1LL, 0LL, vx))); } else { X /= 2, Y /= 2; const ll vx = op[X] ? get<0>(seg.get(X)) : get<2>(seg.get(X)); const ll vy = op[Y] ? get<0>(seg.get(Y)) : get<2>(seg.get(Y)); swap(op[X], op[Y]); seg.set(X, (op[X] ? make_tuple(vx, -1LL, -1LL) : make_tuple(-1LL, 0LL, vx))); seg.set(Y, (op[Y] ? make_tuple(vy, -1LL, -1LL) : make_tuple(-1LL, 0LL, vy))); } } } return 0; }