#!/usr/bin/env pypy3 import itertools import functools M = 10 ** 9 + 7 def mod_sum(ys, mod=M): xs = itertools.chain((0, ), ys) return functools.reduce(lambda x, y: (x + y) % mod, xs) % mod class ModPrime(object): def __init__(self, max_n=1000100, mod=M): # cf. http://hos.ac/slides/20130319_enumeration.pdf self.max_n = max_n self.mod = mod self.invs = [None, 1] for i in range(2, self.max_n + 1): self.invs.append(mod - mod // i * self.invs[mod % i] % mod) self.facts = [1] self.fact_invs = [1] for i in range(1, self.max_n + 1): self.facts.append(self.facts[i - 1] * i % mod) self.fact_invs.append(self.fact_invs[i - 1] * self.invs[i] % mod) def inv(self, n): return self.invs[n] def fact(self, n): return self.facts[n] def fact_inv(self, n): return self.fact_invs[n] def comb(self, n, r): if r < 0 or r > n: return 0 return self.fact(n) * self.fact_inv(r) % self.mod * self.fact_inv(n - r) % self.mod def multi_choose(self, n, r): return self.comb(n + r - 1, r) def solve(n, mod=M): mp = ModPrime(mod=mod) res = (1 + mod_sum(mp.multi_choose(9, k) for k in range(1, n + 1))) % mod return res def main(): print(solve(int(input()))) if __name__ == '__main__': main()