#include /** * @title グラフ用テンプレート * @docs graph_template.md */ template class Edge{ public: int from,to; Cost cost; Edge() {} Edge(int to, Cost cost): to(to), cost(cost){} Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){} }; template using Graph = std::vector>>; template using Tree = std::vector>>; template void add_edge(C &g, int from, int to, T w = 1){ g[from].emplace_back(from, to, w); } template void add_undirected(C &g, int a, int b, T w = 1){ add_edge(g, a, b, w); add_edge(g, b, a, w); } /** * @docs input_graph.md */ template std::vector> input_edges(int M){ std::vector> ret; for(int i = 0; i < M; ++i){ int s, t; std::cin >> s >> t; s -= I; t -= I; T w = 1; if(WEIGHTED) std::cin >> w; ret.emplace_back(s, t, w); } return ret; } template Graph convert_to_graph(int N, const std::vector> &edges){ Graph g(N); for(const auto &e : edges){ add_edge(g, e.from, e.to, e.cost); if(not DIRECTED) add_edge(g, e.to, e.from, e.cost); } return g; } /** * @docs input_tuple_vector.md */ template void input_tuple_vector_init(T &val, int N, std::index_sequence){ (void)std::initializer_list{ (void(std::get(val).resize(N)), 0)... }; } template void input_tuple_vector_helper(T &val, int i, std::index_sequence){ (void)std::initializer_list{ (void(std::cin >> std::get(val)[i]), 0)... }; } template auto input_tuple_vector(int N){ std::tuple...> ret; input_tuple_vector_init(ret, N, std::make_index_sequence()); for(int i = 0; i < N; ++i){ input_tuple_vector_helper(ret, i, std::make_index_sequence()); } return ret; } /** * @title Dijkstra法 * @docs dijkstra.md */ template class Dijkstra{ public: std::vector> dist; private: void run(const Graph &graph, std::vector src){ const int n = graph.size(); dist.assign(n, std::nullopt); std::vector check(n, false); std::priority_queue, std::vector>, std::greater>> pq; for(auto s : src){ dist[s] = 0; pq.emplace(0, s); } while(not pq.empty()){ const auto [d,i] = pq.top(); pq.pop(); if(check[i]) continue; check[i] = true; for(auto &e : graph[i]){ if(not dist[e.to]){ dist[e.to] = d + e.cost; pq.emplace(*dist[e.to], e.to); }else{ if(*dist[e.to] > d + e.cost){ dist[e.to] = d + e.cost; if(not check[e.to]) pq.emplace(*dist[e.to], e.to); } } } } } public: Dijkstra(const Graph &graph, int src){run(graph, {src});} Dijkstra(const Graph &graph, const std::vector &src){run(graph, src);} }; int main(){ int N, M, X, Y; while(std::cin >> N >> M >> X >> Y){ --X, --Y; auto [p, q] = input_tuple_vector(N); Graph g(N); for(int i = 0; i < M; ++i){ int P, Q; std::cin >> P >> Q; --P, --Q; double dx = p[P] - p[Q]; double dy = q[P] - q[Q]; double L = std::sqrt(dx * dx + dy * dy); add_undirected(g, P, Q, L); } auto ans = Dijkstra(g, X).dist[Y].value(); std::cout << std::fixed << std::setprecision(12) << ans << "\n"; } return 0; }