#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); (0..len).map(|_| read_value!($next, $t)).collect::>() }}; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } #[allow(unused)] macro_rules! debug { ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap()); } #[allow(unused)] macro_rules! debugln { ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap()); } /* * Dijkstra's algorithm. * Verified by: AtCoder ABC164 (https://atcoder.jp/contests/abc164/submissions/12423853) */ struct Dijkstra { edges: Vec>, // adjacent list representation } impl Dijkstra { fn new(n: usize) -> Self { Dijkstra { edges: vec![Vec::new(); n] } } fn add_edge(&mut self, from: usize, to: usize, cost: i64) { self.edges[from].push((to, cost)); } /* * This function returns a Vec consisting of the distances from vertex source. */ fn solve(&self, source: usize, inf: i64) -> Vec { let n = self.edges.len(); let mut d = vec![inf; n]; // que holds (-distance, vertex), so that que.pop() returns the nearest element. let mut que = std::collections::BinaryHeap::new(); que.push((0, source)); while let Some((cost, pos)) = que.pop() { let cost = -cost; if d[pos] <= cost { continue; } d[pos] = cost; for &(w, c) in &self.edges[pos] { let newcost = cost + c; if d[w] > newcost { d[w] = newcost + 1; que.push((-newcost, w)); } } } return d; } } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (let _ = write!(out,$($format)*);); } input! { n: usize, m: usize, vx: usize1, vy: usize1, xy: [(i64, i64); n], pq: [(usize1, usize1); m], } let mut dijk = Dijkstra::new(n); for &(p, q) in &pq { let (x1, y1) = xy[p]; let (x2, y2) = xy[q]; let dist = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2); let dist = (dist as f64 * 1.0e10).sqrt() as i64; dijk.add_edge(p, q, dist); dijk.add_edge(q, p, dist); } let sol = dijk.solve(vx, 1 << 58); puts!("{}\n", sol[vy] as f64 / 100000.0); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }