#define CPP17 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CPP17 #include #endif // Yay!! #define endl codeforces // macros for iterator #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) // alias using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair; using tii = std::tuple; using pll = std::pair; using tll = std::tuple; template using vec = std::vector; template using vvec = vec>; // variadic min/max template const T& var_min(const T &t) { return t; } template const T& var_max(const T &t) { return t; } template const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } // variadic chmin/chmax template void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } // multi demension array template struct multi_dim_array { using type = std::array::type, Head>; }; template struct multi_dim_array { using type = std::array; }; template using mdarray = typename multi_dim_array::type; #ifdef CPP17 // fill container template void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } #endif // make multi dimension vector template vec make_v(ssize_t sz) { return vec(sz); } template auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v(std::forward(ts)...)); return vec(hs, v); } // init namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } namespace math { template constexpr T pow(const T &n, ll k) { T ret = n.mul_id_ele(); T cur = n; while (k) { if (k & 1) ret *= cur; cur *= cur; k /= 2; } return ret; } } namespace math { template struct Modint { constexpr Modint(ll x) noexcept : x((Mod + x % Mod) % Mod) { } constexpr Modint() noexcept : Modint(0) { } constexpr Modint add_id_ele() const noexcept { return Modint(0); } constexpr Modint mul_id_ele() const noexcept { return Modint(1); } constexpr ll& value() noexcept { return x; } constexpr ll value() const noexcept { return x; } constexpr Modint& operator +=(const Modint &oth) noexcept { x += oth.value(); if (Mod <= x) x -= Mod; return *this; } constexpr Modint& operator -=(const Modint &oth) noexcept { x += Mod - oth.value(); if (Mod <= x) x -= Mod; return *this; } constexpr Modint& operator *=(const Modint &oth) noexcept { x *= oth.value(); x %= Mod; return *this; } constexpr Modint& operator /=(const Modint &oth) noexcept { x *= oth.inv().value(); x %= Mod; return *this; } constexpr Modint operator +(const Modint &oth) const noexcept { return Modint(x) += oth; } constexpr Modint operator -(const Modint &oth) const noexcept { return Modint(x) -= oth; } constexpr Modint operator *(const Modint &oth) const noexcept { return Modint(x) *= oth; } constexpr Modint operator /(const Modint &oth) const noexcept { return Modint(x) /= oth; } constexpr Modint operator -() const noexcept { return Modint((x != 0) * (Mod - x)); } template constexpr typename std::enable_if::value, const Modint&>::type operator =(T t) noexcept { (*this) = Modint(std::forward(t)); return *this; } constexpr Modint inv() const noexcept { return ::math::pow(*this, Mod - 2); } constexpr ll mod() const noexcept { return Mod; } private: ll x; }; } ssize_t ceil_pow2(ssize_t s) { ssize_t ret = 1; while (ret < s) ret *= 2; return ret; } namespace utility { template constexpr std::array make_array(std::integer_sequence) { return {{ Args... }}; } template struct tuple_concat; template struct tuple_concat, std::tuple> { using type = std::tuple; }; template constexpr auto concat_integer_sequence(std::integer_sequence, std::integer_sequence) { return std::integer_sequence(); } template struct reverse_sequence { using head_type = std::integer_sequence; using tail_type = typename reverse_sequence::type; using type = decltype(concat_integer_sequence(std::declval(), std::declval())); }; template struct reverse_sequence { using type = std::integer_sequence; }; template constexpr auto reverse_ns(std::integer_sequence) { return typename reverse_sequence::type(); } } namespace math { namespace ntt_helper { class reverse_bit { vvec bits; // len = 2^n void build_rev_bit(std::size_t len, vec &v) { if (!v.empty()) return; uint64_t r = 0, s = 0, max_v = len; v.resize(len); for (auto &&ele : v) { // assert(r < max_v * 2); ele = s; r += 2; s ^= max_v - (max_v / (r & -r)); } // assert(max_v * 2 <= r); } ll get_idx(std::size_t pow2) { ll i; for (i = 0; i < 64; i++) if (pow2 & (1ll << i)) break; return i; } void resize(ll idx) { if (bits.size() <= idx) bits.resize(idx + 1); } public: const vec& get(std::size_t len) { const auto idx = get_idx(len); resize(idx); build_rev_bit(len, bits[idx]); return bits[idx]; } }; reverse_bit rb__; template constexpr bool is_primitive_root(ll r) { Modint mr(r); for (ll d = 2; d * d <= Mod; d++) { if ((Mod - 1) % d == 0) { if (pow(mr, d).value() == 1) return false; if (pow(mr, (Mod - 1) / d).value() == 1) return false; } } return true; } template constexpr ll find_primitive_root(ll r) { return (is_primitive_root(r) ? r : find_primitive_root(r + 1)); } template constexpr ll find_primitive_root() { return find_primitive_root(2); } template struct root_pows_calculator { using mint = Modint; using seq = std::make_integer_sequence; using rseq = decltype(utility::reverse_ns(std::declval())); struct aux { mint m; ll k; constexpr aux(mint m, ll k) : m(m), k(k) { } constexpr mint solve() { return pow(m, 1ll << k); } }; constexpr static mint root = mint(Root); constexpr mint apply(ll k) { return aux(root, k).solve(); } template constexpr auto calc(std::integer_sequence) -> std::array { return {{ apply(K)... }}; } constexpr auto calc() { return calc(rseq()); } }; template constexpr auto calc_root_pows() { return root_pows_calculator().calc(); } } // anonymous template class ntt__ { static constexpr ssize_t max_size = 1ll << MaxSizeLog; static constexpr ssize_t max_conv_size = max_size * 2; public: using mint = Modint; using poly = std::array; constexpr ntt__() { } template void convolution(const InputIterator1 a_begin, const InputIterator1 a_end, const InputIterator2 b_begin, const InputIterator2 b_end, OutputIterator out) { auto asz = std::distance(a_begin, a_end); auto bsz = std::distance(b_begin, b_end); auto lower_size = asz + bsz - 1; auto conv_size = ceil_pow2(lower_size); decltype(auto) rev_bit = ntt_helper::rb__.get(conv_size); ntt(a_begin, a_end, false, rev_bit, ntt_a.begin()); ntt(b_begin, b_end, false, rev_bit); for (ll i = 0; i < conv_size; i++) ntt_a[i] *= buf[i]; ntt(ntt_a.begin(), ntt_a.begin() + conv_size, true, rev_bit, out); } template const poly& convolution(const InputIterator1 a_begin, const InputIterator1 a_end, const InputIterator2 b_begin, const InputIterator2 b_end) { convolution(a_begin, a_end, b_begin, b_end, buf.begin()); return buf; } private: using pows_type = std::array; constexpr static ll root_max_pow = pow(mint(PrimitiveRoot), (Mod - 1) / (1ll << MaxSizeLog)).value(); constexpr static ll root_max_inv = mint(root_max_pow).inv().value(); constexpr static pows_type root_pow_lis = ntt_helper::calc_root_pows(); constexpr static pows_type root_inv_lis = ntt_helper::calc_root_pows(); poly buf, ntt_a; template const poly& ntt(const Iterator begin, const Iterator end, bool inverse, const vec &rev_bit) { const auto len = rev_bit.size(); { ssize_t arr_idx = 0; auto sz = std::distance(begin, end); for (auto &&idx : rev_bit) { buf[idx] = (arr_idx < sz ? *(begin + arr_idx) : 0); arr_idx++; } } ssize_t unit_size = 2; ssize_t root_pow_idx = 0; const auto &root_lis = (inverse ? root_inv_lis : root_pow_lis); while (unit_size <= len) { mint root = root_lis[root_pow_idx]; mint root_pow = 1; auto unit_cnt = len / unit_size; for (ll offset = 0; offset < unit_size / 2; offset++) { for (ll unit_counter = 0; unit_counter < unit_cnt; unit_counter++) { auto i = unit_counter * unit_size + offset; auto j = i + unit_size / 2; auto cur_val_i = buf[i], cur_val_j = buf[j]; cur_val_j *= root_pow; buf[i] = cur_val_i + cur_val_j; buf[j] = cur_val_i - cur_val_j; } root_pow *= root; } unit_size *= 2; root_pow_idx++; } if (inverse) { auto inv_len = mint(len).inv(); for (ssize_t i = 0; i < rev_bit.size(); i++) buf[i] *= inv_len; } return buf; } template const void ntt(const InputIterator begin, const InputIterator end, bool inverse, const vec &rev_bit, OutputIterator out) { ntt(begin, end, inverse, rev_bit); auto len = rev_bit.size(); bool copy = true; if constexpr (std::is_same::value) { if (out == buf.begin()) copy = false; } else { } if (copy) std::copy(buf.cbegin(), buf.cbegin() + len, out); } }; template using NTT = ntt__(), MaxSizeLog>; } constexpr ll mod = 998244353; using mint = math::Modint; struct Solver { math::NTT ntt; ll n, q; vec v1, buf; vec av, bv; Solver(ll n, ll q) : n(n), q(q), v1(4 * n), buf(4 * n), av(n), bv(q) { for (ll &e : av) std::cin >> e; for (ll &e : bv) std::cin >> e; } void calc(ll l, ll r) { if (r - l == 1) { v1[2 * l] = av[l] - 1; v1[2 * l + 1] = 1; return; } else if (r - l == 0) { v1[2 * l] = 1; return; } ll m = (l + r) / 2; calc(l, m); calc(m, r); auto sz1 = std::max(1, m - l), sz2 = std::max(1, r - m); ntt.convolution(v1.begin() + 2 * l, v1.begin() + 2 * (l + sz1), v1.begin() + 2 * (l + sz1), v1.begin() + 2 * (l + sz1 + sz2), buf.begin() + 2 * l); std::copy(buf.begin() + 2 * l, buf.begin() + 2 * (l + sz1 + sz2), v1.begin() + 2 * l); } void solve() { calc(0, n); for (ll e : bv) { std::cout << v1[e].value() << "\n"; } } }; int main() { ll n, q; std::cin >> n >> q; Solver solver(n, q); solver.solve(); return 0; }