#include #ifndef DUMP #define DUMP(...) void(0) #endif using namespace std; template > constexpr T power(T a, uint64_t n, T init = 1, Op op = Op{}) { while (n) { if (n & 1) init = op(init, a); if (n >>= 1) a = op(a, a); } return init; } template struct modular { using T = modular; static constexpr uint32_t mod = Mod; uint32_t v; modular(int64_t x = 0) : v((x %= mod) < 0 ? x + mod : x) {} T operator-() const { return T() - *this; } T& operator+=(T b) { return v += int(v += b.v - mod) < 0 ? mod : 0, *this; } T& operator-=(T b) { return v += int(v -= b.v) < 0 ? mod : 0, *this; } T& operator*=(T b) { return v = uint64_t(v) * b.v % mod, *this; } T& operator/=(T b) { return *this *= power(b, mod - 2); } friend T operator+(T a, T b) { return a += b; } friend T operator-(T a, T b) { return a -= b; } friend T operator*(T a, T b) { return a *= b; } friend T operator/(T a, T b) { return a /= b; } friend bool operator==(T a, T b) { return a.v == b.v; } }; struct dsu { int cc; vector p, sz; dsu(int n = 0) : cc(n), p(n, -1), sz(n, 1) {} int root(int v) { if (p[v] == -1) return v; return p[v] = root(p[v]); } bool unite(int u, int v) { u = root(u), v = root(v); if (u == v) return false; --cc; if (sz[u] < sz[v]) swap(u, v); p[v] = u; sz[u] += sz[v]; return true; } bool same(int u, int v) { return root(u) == root(v); } int size(int v) { return sz[root(v)]; } }; struct graph { struct edge { int src, dst, cost; int operator-(int v) const { return src ^ dst ^ v; } }; int n, m; vector edges; vector>> adj; graph(int _n = 0) : n(_n), m(0), adj(n) {} int add(const edge& e, bool directed = false) { edges.push_back(e); adj[e.src].emplace_back(m, e.dst); if (not directed) adj[e.dst].emplace_back(m, e.src); return m++; } }; struct dfs_forest : graph { using T = decltype(edge::cost); vector root, pv, pe, sz, dep, min_dep, last, ord, in, out; vector dist; int trials; dfs_forest(int _n = 0) : graph(_n), dist(n), trials(0) { for (auto p : {&root, &pv, &pe, &sz, &dep, &min_dep, &last, &in, &out}) p->assign(n, -1); } int add(const edge& e) { return graph::add(e); } void dfs(int v) { sz[v] = 1, min_dep[v] = dep[v], last[v] = trials; in[v] = size(ord), ord.push_back(v); for (auto [id, u] : adj[v]) { if (id == pe[v]) continue; if (last[u] == trials) { min_dep[v] = min(min_dep[v], dep[u]); continue; } root[u] = root[v], pv[u] = v, pe[u] = id, dep[u] = dep[v] + 1; dist[u] = dist[v] + edges[id].cost; dfs(u); sz[v] += sz[u], min_dep[v] = min(min_dep[v], min_dep[u]); } out[v] = size(ord); } void build(int r, bool clear_ord = true) { root[r] = r, pv[r] = pe[r] = -1, dep[r] = 0, dist[r] = T{}; if (clear_ord) ord.clear(); dfs(r); ++trials; } void build() { fill(begin(root), end(root), -1); for (int v = 0; v < n; ++v) if (root[v] == -1) build(v, v == 0); } int farther(int id) const { int u = edges[id].src, v = edges[id].dst; return dep[u] < dep[v] ? v : u; } bool spans(int id) const { return id == pe[farther(id)]; } bool anc(int u, int v) const { return in[u] <= in[v] and out[v] <= out[u]; } }; int main() { cin.tie(nullptr)->sync_with_stdio(false); int n, m, base; cin >> n >> m >> base; dsu d(n); dfs_forest g(n); while (m--) { int u, v, z; cin >> u >> v >> z; --u, --v; if (d.same(u, v)) continue; d.unite(u, v); g.add({u, v, z}); } g.build(); using mint = modular; mint res; for (int v = 1; v < n; ++v) { res += power(base, g.edges[g.pe[v]].cost) * g.sz[v] * (n - g.sz[v]); } cout << res.v << '\n'; }