#pragma GCC optimize ("Ofast") #include using namespace std; void*wmem; char memarr[96000000]; template inline S min_L(S a,T b){ return a<=b?a:b; } template inline S max_L(S a,T b){ return a>=b?a:b; } template inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } template inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){ walloc1d(arr, x2-x1, mem); (*arr) -= x1; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } inline void rd(long long &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(long long x){ int s=0; int m=0; char f[20]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } template struct LHeap{ int*hp; int*place; int size; T*val; void malloc(int N){ hp = (int*)std::malloc(N*sizeof(int)); place=(int*)std::malloc(N*sizeof(int)); val=(T*)std::malloc(N*sizeof(T)); } void malloc(int N, int ini){ hp = (int*)std::malloc(N*sizeof(int)); place=(int*)std::malloc(N*sizeof(int)); val=(T*)std::malloc(N*sizeof(T)); if(ini){ init(N); } } void walloc(int N, void **mem=&wmem){ walloc1d(&hp, N, mem); walloc1d(&place, N, mem); walloc1d(&val, N, mem); } void walloc(int N, int ini, void **mem=&wmem){ walloc1d(&hp, N, mem); walloc1d(&place, N, mem); walloc1d(&val, N, mem); if(ini){ init(N); } } void free(){ std::free(hp); std::free(place); std::free(val); } void init(int N){ int i; size=0; for(i=(0);i<(N);i++){ place[i]=-1; } } void up(int n){ int m; while(n){ m=(n-1)/2; if(val[hp[m]]<=val[hp[n]]){ break; } swap(hp[m],hp[n]); swap(place[hp[m]],place[hp[n]]); n=m; } } void down(int n){ int m; for(;;){ m=2*n+1; if(m>=size){ break; } if(m+1val[hp[m+1]]){ m++; } if(val[hp[m]]>=val[hp[n]]){ break; } swap(hp[m],hp[n]); swap(place[hp[m]],place[hp[n]]); n=m; } } void change(int n, T v){ T f = val[n]; val[n] = v; if(place[n]==-1){ place[n] = size; hp[size++] = n; up(place[n]); } else{ if(f < v){ down(place[n]); } else if(f > v){ up(place[n]); } } } int pop(void){ int res = hp[0]; place[res] = -1; size--; if(size){ hp[0]=hp[size]; place[hp[0]]=0; down(0); } return res; } } ; template struct minCostFlows{ int node; int*es; int*emem; int**edge; int**rev; FT**flow; FT f_eps; CT**cost; CT*potential; CT c_eps; LHeap hp; char*reached; CT*cur_cost; int*level; void malloc(int N){ int i; es = (int*)std::malloc(N*sizeof(int)); emem = (int*)std::malloc(N*sizeof(int)); edge = (int**)std::malloc(N*sizeof(int*)); rev = (int**)std::malloc(N*sizeof(int*)); flow = (FT**)std::malloc(N*sizeof(FT*)); cost = (CT**)std::malloc(N*sizeof(CT*)); for(i=(0);i<(N);i++){ emem[i] = 0; edge[i] = rev[i] = NULL; flow[i] = NULL; cost[i] = NULL; } hp.malloc(N); reached = (char*)std::malloc(N*sizeof(char)); cur_cost = (CT*)std::malloc(N*sizeof(CT)); potential = (CT*)std::malloc(N*sizeof(CT)); level = (int*)std::malloc(N*sizeof(int)); node = N; for(i=(0);i<(N);i++){ es[i] = 0; } f_eps = (FT)1e-9; c_eps = (CT)1e-9; } void init(int N){ int i; node = N; for(i=(0);i<(N);i++){ es[i] = 0; } f_eps = (FT)1e-9; c_eps = (CT)1e-9; } void memoryExpand(int i, int sz){ if(sz <= emem[i]){ return; } sz =max_L(max_L(sz, 3), 2*emem[i]); emem[i] = sz; edge[i] = (int*)realloc(edge[i], sz*sizeof(int)); rev[i] = (int*)realloc(rev[i], sz*sizeof(int)); flow[i] = (FT*)realloc(flow[i], sz*sizeof(FT)); cost[i] = (CT*)realloc(cost[i], sz*sizeof(CT)); } void addEdge(int n1, int n2, FT f, CT c){ int s1 = es[n1]++; int s2 = es[n2]++; if(s1 >= emem[n1]){ memoryExpand(n1, es[n1]); } if(s2 >= emem[n2]){ memoryExpand(n2, es[n2]); } edge[n1][s1] = n2; edge[n2][s2] = n1; rev[n1][s1] = s2; rev[n2][s2] = s1; flow[n1][s1] = f; flow[n2][s2] = 0; cost[n1][s1] = c; cost[n2][s2] = -c; } FT solve_do_flow(int i, int ed, FT flim){ int j; int k; FT res = 0; FT tmp; FT send; CT nc; if(i == ed){ return flim; } for(j=(0);j<(es[i]);j++){ if(flow[i][j] <= f_eps){ continue; } k = edge[i][j]; if(reached[k]==0 || level[k] <= level[i]){ continue; } nc = cur_cost[i] + cost[i][j] + potential[i] - potential[k]; if(cur_cost[k] < nc - c_eps || cur_cost[k] > nc + c_eps){ continue; } if(flim < -f_eps){ send = flow[i][j]; } else{ send =min_L(flim, flow[i][j]); } tmp = solve_do_flow(k, ed, send); if(tmp < f_eps){ continue; } res += tmp; flow[i][j] -= tmp; flow[k][rev[i][j]] += tmp; if(flim >= -f_eps){ flim -= tmp; if(flim <= f_eps){ break; } } } return res; } template void solve(int st, int ed, FTS &fres, CTS &cres, FT flim = -1, CT clim = 0){ int i; int j; int k; int l; FT f; CT nc; fres = 0; cres = 0; for(i=(0);i<(node);i++){ potential[i] = 0; } for(;;){ if(flim >= -f_eps && flim <= f_eps){ break; } hp.init(node); for(i=(0);i<(node);i++){ reached[i] = 0; } reached[st] = 1; cur_cost[st] = 0; l = 0; hp.change(st, cur_cost[st]); while(hp.size){ i = hp.pop(); level[i] = l++; for(j=(0);j<(es[i]);j++){ if(flow[i][j] <= f_eps){ continue; } k = edge[i][j]; nc = cur_cost[i] + cost[i][j] + potential[i] - potential[k]; if(reached[k]==0 || cur_cost[k] > nc+c_eps){ reached[k] = 1; cur_cost[k] = nc; hp.change(k, cur_cost[k]); } } } if(reached[ed]==0){ break; } if(flim==-2 && cur_cost[ed] + potential[ed] >= clim){ break; } f = solve_do_flow(st, ed, flim); if(f <= f_eps){ break; } for(i=(0);i<(node);i++){ if(reached[i]){ potential[i] += cur_cost[i]; } } fres += f; cres += f * potential[ed]; flim -= f; } } } ; int N; int M; int A[100000]; int B[100000]; long long C[100000]; long long D[100000]; int main(){ int i; wmem = memarr; int f; long long c; minCostFlows flow; rd(N); rd(M); { int AlM5nNnR; for(AlM5nNnR=(0);AlM5nNnR<(M);AlM5nNnR++){ rd(A[AlM5nNnR]);A[AlM5nNnR] += (-1); rd(B[AlM5nNnR]);B[AlM5nNnR] += (-1); rd(C[AlM5nNnR]); rd(D[AlM5nNnR]); } } flow.malloc(N); flow.init(N); for(i=(0);i<(M);i++){ flow.addEdge(A[i], B[i], 1, C[i]); flow.addEdge(B[i], A[i], 1, C[i]); flow.addEdge(A[i], B[i], 1, D[i]); flow.addEdge(B[i], A[i], 1, D[i]); } flow.solve(0, N-1, f, c, 2); wt_L(c); wt_L('\n'); return 0; } // cLay version 20201204-1 [beta] // --- original code --- // template // struct minCostFlows { // int node; // int *es, *emem, **edge, **rev; // FT **flow, f_eps; // CT **cost, *potential, c_eps; // // LHeap hp; // char *reached; // CT *cur_cost; // int *level; // // void malloc(int N){ // int i; // es = (int*)std::malloc(N*sizeof(int)); // emem = (int*)std::malloc(N*sizeof(int)); // edge = (int**)std::malloc(N*sizeof(int*)); // rev = (int**)std::malloc(N*sizeof(int*)); // flow = (FT**)std::malloc(N*sizeof(FT*)); // cost = (CT**)std::malloc(N*sizeof(CT*)); // rep(i,N){ // emem[i] = 0; // edge[i] = rev[i] = NULL; // flow[i] = NULL; // cost[i] = NULL; // } // // hp.malloc(N); // reached = (char*)std::malloc(N*sizeof(char)); // cur_cost = (CT*)std::malloc(N*sizeof(CT)); // potential = (CT*)std::malloc(N*sizeof(CT)); // level = (int*)std::malloc(N*sizeof(int)); // // node = N; // rep(i,N) es[i] = 0; // f_eps = (FT)1e-9; // c_eps = (CT)1e-9; // } // // void init(int N){ // int i; // node = N; // rep(i,N) es[i] = 0; // f_eps = (FT)1e-9; // c_eps = (CT)1e-9; // } // // void memoryExpand(int i, int sz){ // if(sz <= emem[i]) return; // sz = max(sz, 3, 2emem[i]); // emem[i] = sz; // edge[i] = (int*)realloc(edge[i], sz*sizeof(int)); // rev[i] = (int*)realloc(rev[i], sz*sizeof(int)); // flow[i] = (FT*)realloc(flow[i], sz*sizeof(FT)); // cost[i] = (CT*)realloc(cost[i], sz*sizeof(CT)); // } // // void addEdge(int n1, int n2, FT f, CT c){ // int s1 = es[n1]++; // int s2 = es[n2]++; // if(s1 >= emem[n1]) memoryExpand(n1, es[n1]); // if(s2 >= emem[n2]) memoryExpand(n2, es[n2]); // edge[n1][s1] = n2; edge[n2][s2] = n1; // rev[n1][s1] = s2; rev[n2][s2] = s1; // flow[n1][s1] = f; flow[n2][s2] = 0; // cost[n1][s1] = c; cost[n2][s2] = -c; // } // // FT solve_do_flow(int i, int ed, FT flim){ // int j, k; // FT res = 0, tmp, send; // CT nc; // // if(i == ed){ // return flim; // } // rep(j,es[i]){ // if(flow[i][j] <= f_eps) continue; // k = edge[i][j]; // if(reached[k]==0 || level[k] <= level[i]) continue; // nc = cur_cost[i] + cost[i][j] + potential[i] - potential[k]; // if(cur_cost[k] < nc - c_eps || cur_cost[k] > nc + c_eps) continue; // // if(flim < -f_eps){ // send = flow[i][j]; // } else { // send = min(flim, flow[i][j]); // } // tmp = solve_do_flow(k, ed, send); // if(tmp < f_eps) continue; // // res += tmp; // flow[i][j] -= tmp; // flow[k][rev[i][j]] += tmp; // // if(flim >= -f_eps){ // flim -= tmp; // if(flim <= f_eps) break; // } // } // // return res; // } // // template // void solve(int st, int ed, FTS &fres, CTS &cres, FT flim = -1, CT clim = 0){ // int i, j, k, l; // FT f; // CT nc; // // fres = 0; // cres = 0; // rep(i,node) potential[i] = 0; // // // for(;;){ // if(flim >= -f_eps && flim <= f_eps) break; // hp.init(node); // rep(i,node) reached[i] = 0; // reached[st] = 1; // cur_cost[st] = 0; // l = 0; // hp.change(st, cur_cost[st]); // while(hp.size){ // i = hp.pop(); // level[i] = l++; // rep(j, es[i]){ // if(flow[i][j] <= f_eps) continue; // k = edge[i][j]; // nc = cur_cost[i] + cost[i][j] + potential[i] - potential[k]; // if(reached[k]==0 || cur_cost[k] > nc+c_eps){ // reached[k] = 1; // cur_cost[k] = nc; // hp.change(k, cur_cost[k]); // } // } // } // if(reached[ed]==0) break; // if(flim==-2 && cur_cost[ed] + potential[ed] >= clim) break; // f = solve_do_flow(st, ed, flim); // if(f <= f_eps) break; // // rep(i,node) if(reached[i]) potential[i] += cur_cost[i]; // fres += f; // cres += f * potential[ed]; // flim -= f; // } // } // }; // // // int N, M, A[1d5], B[1d5]; ll C[1d5], D[1d5]; // { // int f; ll c; // minCostFlows flow; // rd(N,M,(A--,B--,C,D)(M)); // flow.malloc(N); // flow.init(N); // rep(i,M){ // flow.addEdge(A[i], B[i], 1, C[i]); // flow.addEdge(B[i], A[i], 1, C[i]); // flow.addEdge(A[i], B[i], 1, D[i]); // flow.addEdge(B[i], A[i], 1, D[i]); // } // flow.solve(0, N-1, f, c, 2); // wt(c); // }