#include #include #include #include #include #include #ifdef NDEBUG #undef NDEBUG #endif #include #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) using namespace std; //////////////////////////////////////////////////////// //ModInt template struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) {} ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; typedef ModInt<1000000007> mint; //////////////////////////////////////////////////////// //Black box linear algebra //Berlekamp-Massey algorithm //(\sum_{j=0}^L C[j] s[i + L - j]) = 0 for all 0 <= i < N - L //となるような最小の L, C を返す。C[0] = 1 である int berlekampMessey(const vector &s, vector &C) { int N = (int)s.size(); C.assign(N + 1, mint()); vector B(N + 1, mint()); C[0] = B[0] = 1; int degB = 0; vector T; int L = 0, m = 1; mint b = 1; for(int n = 0; n < N; ++ n) { mint d = s[n]; for(int i = 1; i <= L; ++ i) d += C[i] * s[n - i]; if(d == mint()) { ++ m; } else { if(2 * L <= n) T.assign(C.begin(), C.begin() + (L + 1)); mint coeff = -d * b.inverse(); for(int i = 0; i <= degB; ++ i) C[m + i] += coeff * B[i]; if(2 * L <= n) { L = n + 1 - L; B.swap(T); degB = (int)B.size() - 1; b = d; m = 1; } else { ++ m; } } } C.resize(L + 1); return L; } //体上の数列のminimum polynomialを計算する。 //(\sum_{j=0}^d phi[j] s[i + j]) = 0 for all i void computeMinimumPolynomialForLinearlyRecurrentSequence(const vector &a, vector &phi) { int n2 = (int)a.size(), n = n2 / 2; assert(n2 % 2 == 0); int L = berlekampMessey(a, phi); reverse(phi.begin(), phi.begin() + (L + 1)); } struct RandomModInt { default_random_engine re; uniform_int_distribution dist; #ifndef _DEBUG RandomModInt() : re(random_device{}()), dist(1, mint::Mod - 1) { } #else RandomModInt() : re(), dist(1, mint::Mod - 1) { } #endif mint operator()() { mint r; r.x = dist(re); return r; } } randomModInt; void randomModIntVector(vector &v) { int n = (int)v.size(); for(int i = 0; i < n; ++ i) v[i] = randomModInt(); } //////////////////////////////////////////////////////// //解答メイン部分 typedef unsigned long long ull; mint dot(const vector &a, const vector &b) { int n = (int)a.size(); assert(b.size() == n); ull sum = 0; for(int i = 0; i < n; ) { int k = min(n - i, 16); rep(j, k) { sum += (ull)a[i].x * b[i].x; ++ i; } sum %= mint::Mod; } return mint((int)sum); } mint computeDeterminant(int N, const vector &diag, const vector > &validEdges, int src, int dst) { int n = N - 1; if(n == 0) return 1; vector D(n); vector m; randomModIntVector(D); vector u(n), b(n); vector tmp(n); randomModIntVector(u); randomModIntVector(b); vector uTAib(n * 2); uTAib[0] = dot(u, b); vector diag1(n); rep(i, n) diag1[i] = diag[i] + 1; vector > edges(validEdges.begin(), validEdges.end()); for(int k = 1; k < n * 2; ++ k) { tmp.assign(n, 0); rep(i, n) b[i] *= D[i]; ull sumb_t = 0; rep(i, n) sumb_t += b[i].x; if(src != -1) { if(dst < n && src < n) tmp[dst] += mint::Mod - b[src].x; } for(auto e : edges) tmp[e.first] += b[e.second].x; unsigned sumb = sumb_t % mint::Mod; rep(i, n) b[i].x = (tmp[i] + (ull)diag1[i].x * b[i].x + mint::Mod - sumb) % mint::Mod; uTAib[k] = dot(u, b); } computeMinimumPolynomialForLinearlyRecurrentSequence(uTAib, m); //運が悪い場合は気にしないことにする //m = char(AD) assert(m.size() == n + 1); assert(m.back() == mint(1)); mint detD = 1; for(int i = 0; i < n; ++ i) detD *= D[i]; mint invdetD = detD.inverse(); mint detA = m[0] * invdetD; if(n % 2 == 1) detA = mint() - detA; return detA; } mint countEulerianCyclesOnComplementGraph(int N, const vector > &edges, int src, int dst) { assert(N > 0); vector loops(N, 1); vector outDeg(N, N), inDeg(N, N); //サイクルにならない場合は辺を1つ足してサイクルにするようにする if(src != -1) { assert(src != dst); ++ outDeg[dst]; ++ inDeg[src]; } for(auto e : edges) { -- outDeg[e.first]; -- inDeg[e.second]; if(e.first == e.second) -- loops[e.first]; } rep(i, N) assert(inDeg[i] == outDeg[i]); //BEST theoremによりオイラー閉路を数えられる // vector fact(N + 1); fact[0] = 1; rer(n, 1, N) fact[n] = fact[n - 1] * n; //matrix tree theorem によって有向木を数える // //頂点 N - 1 を根とする。 //1行削除されるため、それに接する辺も一緒に削除しておく //また、ループも削除しておく vector > validEdges; for(auto e : edges) if(e.first < N - 1 && e.second < N - 1 && e.first != e.second) validEdges.push_back(e); //なんとなくソートしておく sort(validEdges.begin(), validEdges.end()); //行列の対角要素 vector diag(N - 1); rep(i, N - 1) diag[i] = outDeg[i] - loops[i]; mint res = computeDeterminant(N, diag, validEdges, src, dst); rep(i, N) { int deg = outDeg[i]; assert(deg > 0); res *= fact[deg - 1]; } return res; } int main() { do { int N, M; scanf("%d%d", &N, &M); vector > g(N, vector(N, true)); vector outDeg(N, N), inDeg(N, N); vector > edges(M); rep(i, M) { int A, B; scanf("%d%d", &A, &B), -- A, -- B; assert(g[A][B]); g[A][B] = false; edges[i] = {A, B}; -- outDeg[A]; -- inDeg[B]; } //空グラフは場合分けしておく if(M == N * N) { puts("1"); continue; } //まず、eulerianかどうか判定する int src = -1, dst = -1; bool eulerian = true; rep(i, N) { if(outDeg[i] == inDeg[i]) { } else if(outDeg[i] == inDeg[i] + 1) { eulerian &= src == -1; src = i; } else if(outDeg[i] == inDeg[i] - 1) { eulerian &= dst == -1; dst = i; } else { eulerian = false; } } if(src != -1 || dst != -1) eulerian &= src != -1 && dst != -1; if(!eulerian) { puts("0"); continue; } //孤立点を取り除いたグラフを作る vector vertexIndex(N, -1); int V = 0; rep(i, N) if(outDeg[i] > 0 || inDeg[i] > 0) vertexIndex[i] = V ++; if(src != -1) { src = vertexIndex[src]; dst = vertexIndex[dst]; assert(src != -1 && dst != -1); } for(auto &e : edges) { e.first = vertexIndex[e.first]; e.second = vertexIndex[e.second]; if(e.first == -1 || e.second == -1) e = {-1, -1}; } edges.erase(remove(edges.begin(), edges.end(), make_pair(-1, -1)), edges.end()); mint ans = countEulerianCyclesOnComplementGraph(V, edges, src, dst); //サイクルの場合、どの辺から始めるかの分をかける if(src == -1) ans *= N * N - M; printf("%d\n", ans); } while(0); return 0; }