#include #include #include typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; typedef int8_t s8; typedef int16_t s16; typedef int32_t s32; typedef int64_t s64; const int INF = (1 << 28); const long INFL = (1LL << 50); class MillerRabin { public: u64 modmul_64(u64 a, u64 b, u64 mod) { u64 res = 0; a %= mod; for(s32 i = 63; i >= 0; --i) { res = (res << 1) % mod; if( ((b >> i) & 0x01) == 1 ) { res = (res + a) % mod; } } return res; } u64 modpow_64(u64 a, u64 b, u64 mod) { u64 res = 1, p = a; a %= mod; b %= mod; while( b != 0 ) { if( (b & 0x01) != 0 ) { res = modmul_64(res, p, mod); } p = modmul_64(p, p, mod); b >>= 1; } return res; } bool operator () (u64 N) { u32 k = 16; if( N == 2 ) return true; if( N <= 1 or N % 2 == 0 ) return false; u64 d = (N - 1); u64 s = 0; while( d % 2 == 0 ) { d >>= 1; s += 1; } for(s32 i = 0; i < k; ++i) { u64 a = (((u64)rand() << 32) | (u64)rand()) % (N - 2) + 1; u64 r = modpow_64(a, d, N); if( r == 1 ) continue; if( r == N - 1 ) continue; for(s32 j = 1; j < s; ++j) { r = modpow_64(r, 2, N); if( r == N - 1 ) { goto label_1; } } return false; label_1:; } return true; } }; template void Swap(T& arg1, T& arg2) { T temp = arg1; arg1 = arg2; arg2 = temp; } u32 gcd(u32 a, u32 b) { if( a < b ) Swap(a, b); while( b != 0 ) { a = a % b; Swap(a, b); } return a; } u64 gcd(u64 a, u64 b) { if( a < b ) Swap(a, b); while( b != 0 ) { a = a % b; Swap(a, b); } return a; } template T gcd(T a, T b) { if( a < b ) Swap(a, b); while( b != 0 ) { a %= b; Swap(a, b); } return a; } class PollardsRho { public: u64 modmul_64(u64 a, u64 b, u64 mod) { u64 res = 0; a %= mod; for(s32 i = 63; i >= 0; --i) { res = (res << 1) % mod; if( ((b >> i) & 0x01) == 1 ) { res = (res + a) % mod; } } return res; } u64 operator () (u64 N) { u64 x = 2; u64 y = 2; u64 d = 1; while( d == 1 ) { x = modmul_64(x, x, N); u64 ty = modmul_64(y, y, N); y = modmul_64(ty, ty, N); d = gcd(llabs(x - y), N); } if( d == N ) { return 0; } return d; } }; class PrimeFactorization { public: u64 primes_[1024]; u64 p_num_[1024]; u64 num_; bool isnotprime[1000000]; public: void operator () (u64 N) { num_ = 0; //for(s32 i = 0; i < 1000000; ++i) isprime[i] = true; isnotprime[0] = isnotprime[1] = true; for(s32 i = 0; i < 1000; ++i) { if( not isnotprime[i] ) { for(s32 j = i + i; j < 1000000; j+=i) { isnotprime[j] = true; } } } for(s32 i = 2; i < 1000000; ++i) { if( isnotprime[i] ) continue; if( N % i == 0 and N != 0 ) { primes_[num_] = i; p_num_[num_] = 1; num_ += 1; N /= i; while( N % i == 0 and N != 0 ) { p_num_[num_ - 1] += 1; N /= i; } } } if( N == 1 ) return; split(N); } void split(u64 N) { if( N == 1 ) return; MillerRabin mr; for(s32 i = 0; i < num_; ++i) { if( N % primes_[i] == 0 ) { p_num_[i] += 1; split(N / primes_[i]); return; } } u64 root = (u64)sqrt(N); if( root * root == N ) { split(root); split(root); return; } if( mr(N) ) { primes_[num_] = N; p_num_[num_] = 1; num_ += 1; return; } u64 a, b; split2(N, a, b); split(a); split(b); } void split2(u64 N, u64& a, u64& b) { PollardsRho pr; a = pr(N); b = N / a; } }; int main() { PrimeFactorization pf; long N; std::cin >> N; pf(N); long res = 1; for(int i = 0; i < pf.num_; ++i) { if( pf.p_num_[i] % 2 != 0 ) { res *= pf.primes_[i]; } } std::cout << res << std::endl; return 0; }