#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LEN(x) (long long)(x.size()) #define FOR(i, a, n) for(int i=(a);i<(n); ++i) #define FOE(i, a) for(auto i : a) #define ALL(c) (c).begin(), (c).end() #define RALL(c) (c).rbegin(), (c).rend() #define SUM(x) std::accumulate(ALL(x), 0LL) #define MIN(v) *std::min_element(v.begin(), v.end()) #define MAX(v) *std::max_element(v.begin(), v.end()) #define EXIST(v, x) (std::find(v.begin(), v.end(), x) != v.end()) #define BIT_COUNT32(bit) (__builtin_popcount(bit)) #define BIT_COUNT64(bit) (__builtin_popcountll(bit)) typedef long long LL; template std::vector make_v(size_t a){return std::vector(a);} template auto make_v(size_t a, Ts... ts){ return std::vector(ts...))>(a,make_v(ts...));} // C++14 template typename std::enable_if::value==0>::type fill_v(T &t,const V &v){t=v;} template typename std::enable_if::value!=0>::type fill_v(T &t,const V &v){for(auto &e:t) fill_v(e,v);} template inline T ceil(T a, T b) { return (a + b - 1) / b; } void print() { std::cout << std::endl; } template void print(Head&& head, Tail&&... tail) { std::cout << head; if (sizeof...(tail) != 0) {std::cout << " ";} print(std::forward(tail)...); } template void print(std::vector &v) {for (auto& a : v) { std::cout << a; if (&a != &v.back()) {std::cout << " ";} }std::cout << std::endl;} template void print(std::vector> &vv) { for (auto& v : vv) { print(v); }} void debug() { std::cerr << std::endl; } template void debug(Head&& head, Tail&&... tail) { std::cerr << head; if (sizeof...(tail) != 0) {std::cerr << " ";} print(std::forward(tail)...); } template void debug(std::vector &v) {for (auto& a : v) { std::cerr << a; if (&a != &v.back()) {std::cerr << " ";} }std::cerr << std::endl;} template void debug(std::vector> &vv) { for (auto& v : vv) { print(v); }} inline bool inside(long long y, long long x, long long H, long long W) {return 0 <= y and y < H and 0 <= x and x < W; } template inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template inline T manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); } template T &chmin(T &a, const T &b) { return a = std::min(a, b); } template T &chmax(T &a, const T &b) { return a = std::max(a, b); } bool is_bit_on(const unsigned long long bit, const unsigned int i) { return (bit >> i) & 1u; } unsigned long long bit_set(const unsigned long long bit, const unsigned int i, const unsigned int b) { assert(b == 0 or b == 1); if (b == 0) { return bit & ~(1ull << i); } else {return bit | (1ull << i); } } template inline std::vector unique(std::vector v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); return v; } // 初項s交差d長さnの数列の和 long long sum_of_arithmetic_progression(long long s, long long d, long long n) { return n * (2 * s + (n - 1) * d) / 2; } // xが2の階乗かどうか判定 bool is_power_of_two(long long x) { return !(x & (x - 1)); } long long gcd(long long a, long long b) { if (b == 0) { return a; } return gcd(b, a % b); } long long gcd(std::vector &v) { long long ans = v[0]; for (int i = 1; i < (int) v.size(); ++i) { ans = gcd(ans, v[i]); } return ans; } long long lcm(long long a, long long b) { long long g = gcd(a, b); return a / g * b; } const int INF = 1u << 30u; // 1,073,741,824 const long long LINF = 1ull << 60u; const double EPS = 1e-9; const long double PI = acos(-1.0); const std::vector dy2 = {0, 1}, dx2 = {1, 0}; // 右,下 const std::vector dy4 = {0, 1, 0, -1}, dx4 = {1, 0, -1, 0}; const std::vector dy6 = {0, -1, 0, 1, 1, 1}, dx6 = {1, 0, -1, 0, 1, -1}; const std::vector dy8 = {0, -1, 0, 1, 1, -1, -1, 1}, dx8 = {1, 0, -1, 0, 1, 1, -1, -1}; template class Edge { public: const int from; const int to; const T distance; const int no; Edge(int from, int to, T distance, int no=-1) : from(from), to(to), distance(distance), no(no) { } }; // Yen's algorithm // 最短経路をK個見つける // O(KN * SP).SPは最短経路問題の計算量 template class KShortestPath { public: const int num_nodes; const int K; private: std::vector> graph; std::vector> edges; std::vector k_distance; std::vector> A; // A[k][i] = k 番目の最短経路の i 番目の edge std::set>> B; // deviation path std::vector removed_edge; // removed_edge[i] = edge i が使えない time public: KShortestPath(const int num_nodes, const int K) : num_nodes(num_nodes), K(K) { this->graph.resize(num_nodes); } void add_directed_edge(const int u, const int v, const T w) { const int no = this->edges.size(); this->graph[u].emplace_back(no); this->edges.emplace_back(Edge(u, v, w, no)); } void add_undirected_edge(const int u, const int v, const T w) { const int no = this->edges.size(); this->graph[u].emplace_back(no); this->graph[v].emplace_back(no + 1); this->edges.emplace_back(Edge(u, v, w, no)); this->edges.emplace_back(Edge(v, u, w, no)); } Edge get_edge(const int edge_no) const { return this->edges[edge_no]; } // k番目の最短経路の距離を返す // 0-index T k_shortest_path_distance(const int k) const { return this->k_distance.at(k); } // k番目の最短経路の辺のindexを格納した配列を返す // 0-index std::vector k_shortest_path(const int k) const { return this->A.at(k); } size_t num_shortest_path() const { return A.size(); } void build(const int s, const int t) { assert(s < this->num_nodes); assert(t < this->num_nodes); assert(s != t); std::vector distance(this->num_nodes, std::numeric_limits::max()); this->removed_edge.resize(this->edges.size(), -1); int time = 0; // 1つ目の最短経路を見つける { distance[s] = 0; auto[dist, path] = this->dijkstra(s, t, 0, distance); if (path.empty()) { return; } this->A.emplace_back(path); this->k_distance.emplace_back(dist); } for (int _ = 1; _ < this->K; ++_) { const auto &last_path = this->A.back(); std::vector spur_root; std::vector candidate(A.size()); // last_path と一致している経路の index を格納 std::iota(candidate.begin(), candidate.end(), 0); distance.assign(this->num_nodes, std::numeric_limits::max()); // last_path での最短経路をいれていく distance[s] = 0; for (int i = 0; i < int(last_path.size()); ++i) { const int edge_idx = last_path[i]; const auto &edge = this->edges[edge_idx]; const int spur_node = edge.from; std::vector accept; // 使えない辺を見つける for (const auto c : candidate) { const auto &path_k = this->A[c]; if (i < int(path_k.size())) { this->removed_edge[this->edges[path_k[i]].no] = time; // spur_node の次のノードも一致するパスは候補に残す if (path_k[i] == last_path[i]) { accept.emplace_back(c); } } } candidate = move(accept); // distance には s から spur_node までの last_path 上の経路の長さが入っている auto [dist, suffix_path] = this->dijkstra(spur_node, t, time, distance); time++; // spur_node -> t へのパスがみつかった if (not suffix_path.empty()) { std::vector path = spur_root; path.insert(path.end(), suffix_path.begin(), suffix_path.end()); this->B.insert({dist, path}); } spur_root.emplace_back(edge_idx); distance[edge.to] = distance[edge.from] + edge.distance; } // これ以上最短経路はない if (this->B.empty()) { break; } // 候補のうち最短の経路を確定にする this->A.emplace_back(this->B.begin()->second); this->k_distance.emplace_back(this->B.begin()->first); this->B.erase(this->B.begin()); } } private: // 負辺がないとき用 std::pair> dijkstra(const int start, const int end, const int time, std::vector distance) const { //[(最短距離, node番号)]のque(距離が近い順にとりだす) std::priority_queue, std::vector>, std::greater>> que; que.push({distance[start], start}); std::vector prev(this->num_nodes); // 経路復元用 std::vector used(this->num_nodes); while (not que.empty()) { const auto [now_dist, from] = que.top(); que.pop(); if (used[from]) { continue; } used[from] = true; if (from == end) { break; } for (const auto edge_idx : this->graph[from]) { const auto &edge = this->edges[edge_idx]; if (this->removed_edge[edge.no] >= time) { continue; } const auto to = edge.to; const auto new_dist = now_dist + edge.distance; if (new_dist < distance[to]) { prev[to] = edge_idx; distance[to] = new_dist; que.push({new_dist, to}); } } } // t にたどり着けなかった if (not used[end]) { return {0, {}}; } std::vector path; int now = end; while (now != start) { path.emplace_back(prev[now]); now = this->edges[prev[now]].from; } reverse(path.begin(), path.end()); return {distance[end], path}; } }; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(0); int N, M, K, X, Y; cin >> N >> M >> K; cin >> X >> Y; X--; Y--; vector P(N), Q(N); for (int i = 0; i < N; ++i) { cin >> P[i] >> Q[i]; } KShortestPath ksp(N, K); for (int i = 0; i < M; ++i) { int a, b; cin >> a >> b; a--; b--; auto d = sqrt((P[a] - P[b]) * (P[a] - P[b]) + (Q[a] - Q[b]) * (Q[a] - Q[b])); ksp.add_undirected_edge(a, b, int(d * 10000)); } ksp.build(X, Y); for (int i = 0; i < K; ++i) { if (i < int(ksp.num_shortest_path())) { print(ksp.k_shortest_path_distance(i) / 10000.0); // FOE(r, ksp.k_shortest_path(i)) { // cout << ksp.get_edge(r).from + 1 << "->" << ksp.get_edge(r).to + 1 << ", "; // } // cout << endl; } else { print(-1); } } return 0; }