#include #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define FOR(i,n) for(int i = 0; i < (n); i++) #define sz(c) ((int)(c).size()) #define ten(x) ((int)1e##x) #define all(v) (v).begin(), (v).end() using namespace std; using ll=long long; using FLOW=int; using P = pair; const long double PI=acos(-1); const ll INF=1e18; const int inf=1e9; struct Edge { ll to; ll cost; }; using Graph=vector>; template bool chmax(T &a,const T& b){ if (a bool chmin(T &a,const T& b){ if (a>b){ a=b; return true; } return false; } template struct Fp{ ll val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; } static constexpr int getmod() { return MOD; } constexpr Fp operator - () const noexcept { return val ? MOD - val : 0; } constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp& r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator -= (const Fp& r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator *= (const Fp& r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator /= (const Fp& r) noexcept { ll a = r.val, b = MOD, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator == (const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp& r) const noexcept { return this->val != r.val; } constexpr bool operator < (const Fp& r) const noexcept { return this->val < r.val; } friend constexpr istream& operator >> (istream& is, Fp& x) noexcept { is >> x.val; x.val %= MOD; if (x.val < 0) x.val += MOD; return is; } friend constexpr ostream& operator << (ostream& os, const Fp& x) noexcept { return os << x.val; } friend constexpr Fp modpow(const Fp& a, long long n) noexcept { Fp res=1,r=a; while(n){ if(n&1) res*=r; r*=r; n>>=1; } return res; } friend constexpr Fp modinv(const Fp& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } return Fp(u); } }; struct SCCgraph{ // input vector> G, rG; // result vector> scc; vector cmp; vector> dag; // constructor SCCgraph(int N) : G(N), rG(N) {} // add edge void addedge(int u, int v) { G[u].push_back(v); rG[v].push_back(u); } // decomp vector seen; vector vs, rvs; void dfs(int v) { seen[v] = true; for (auto e : G[v]) if (!seen[e]) dfs(e); vs.push_back(v); } void rdfs(int v, int k) { seen[v] = true; cmp[v] = k; for (auto e : rG[v]) if (!seen[e]) rdfs(e, k); rvs.push_back(v); } // reconstruct set> newEdges; void reconstruct() { int N = (int)G.size(); int dV = (int)scc.size(); dag.resize(dV); newEdges.clear(); for (int i = 0; i < N; ++i) { int u = cmp[i]; for (auto e : G[i]) { int v = cmp[e]; if (u == v) continue; if (!newEdges.count({u, v})) { dag[u].push_back(v); newEdges.insert({u, v}); } } } } void solve() { // first dfs int N = (int)G.size(); seen.assign(N, false); vs.clear(); for (int v = 0; v < N; ++v) if (!seen[v]) dfs(v); // back dfs int k = 0; scc.clear(); cmp.assign(N, -1); seen.assign(N, false); for (int i = N - 1; i >= 0; --i) { if (!seen[vs[i]]) { rvs.clear(); rdfs(vs[i], k++); scc.push_back(rvs); } } // reconstruct reconstruct(); } }; template struct SegmentTree{ using F=function; F fT; const T et; int n; vector dat; SegmentTree(int N,F fT_,T et_) : fT(fT_),et(et_){ n=1; while(n dat; FenwickTree(int N){ n=1; while(n struct LazySegTree { using FX = function; using FA = function; using FM = function; using FP = function; int n; FX fx; FA fa; FM fm; FP fp; const X ex; const M em; vector dat; vector lazy; LazySegTree(int n_, FX fx_, FA fa_, FM fm_, FP fp_, X ex_, M em_) : n(), fx(fx_), fa(fa_), fm(fm_), fp(fp_), ex(ex_), em(em_), dat(n_ * 4, ex), lazy(n_ * 4, em) { int x = 1; while (n_ > x) x *= 2; n = x; } void set(int i, X x) { dat[i + n - 1] = x; } void build() { for (int k = n - 2; k >= 0; k--) dat[k] = fx(dat[2 * k + 1], dat[2 * k + 2]); } /* lazy eval */ void eval(int k, int len) { if (lazy[k] == em) return; // 更新するものが無ければ終了 if (k < n - 1) { // 葉でなければ子に伝搬 lazy[k * 2 + 1] = fm(lazy[k * 2 + 1], lazy[k]); lazy[k * 2 + 2] = fm(lazy[k * 2 + 2], lazy[k]); } // 自身を更新 dat[k] = fa(dat[k], fp(lazy[k], len)); lazy[k] = em; } void update(int a, int b, M x, int k, int l, int r) { eval(k, r - l); if (a <= l && r <= b) { // 完全に内側の時 lazy[k] = fm(lazy[k], x); eval(k, r - l); } else if (a < r && l < b) { // 一部区間が被る時 update(a, b, x, k * 2 + 1, l, (l + r) / 2); // 左の子 update(a, b, x, k * 2 + 2, (l + r) / 2, r); // 右の子 dat[k] = fx(dat[k * 2 + 1], dat[k * 2 + 2]); } } //[a,b) void update(int a, int b, M x) { update(a, b, x, 0, 0, n); } X query_sub(int a, int b, int k, int l, int r) { eval(k, r - l); if (r <= a || b <= l) { // 完全に外側の時 return ex; } else if (a <= l && r <= b) { // 完全に内側の時 return dat[k]; } else { // 一部区間が被る時 X vl = query_sub(a, b, k * 2 + 1, l, (l + r) / 2); X vr = query_sub(a, b, k * 2 + 2, (l + r) / 2, r); return fx(vl, vr); } } //[a,b) X query(int a, int b) { return query_sub(a, b, 0, 0, n); } X get(int i){ return query(i,i+1); } }; struct UnionFind{ int n; vector data; vector edge_num; UnionFind(int N) : n(N) , data(N,-1) , edge_num(N,0){} int root(int x){ // データxが属する木の根を再帰で得る:root(x) = {xの木の根} return data[x]<0?x:data[x]=root(data[x]); } void unite(int x, int y) { x=root(x); y=root(y); if(x!=y){ if (data[x]>data[y]) swap(x, y); data[x]+=data[y]; data[y]=x; } if(x!=y){ edge_num[x]+=edge_num[y]; edge_num[y]=0; } edge_num[x]+=1; } bool same(int x, int y){ // 2つのデータx, yが属する木が同じならtrueを返す return root(x)==root(y); } int size(int x){ return -data[root(x)]; } int edge(int x){ return edge_num[root(x)]; } vector get_roots(){ vector res; for(int i=0;i struct MFGraph{ static_assert(is_integral< flow_t >::value, "template parameter flow_t must be integral type"); const flow_t INF; struct edge { int to; flow_t cap; int rev; bool isrev; int idx; }; vector< vector< edge > > graph; vector< int > min_cost, iter; flow_t max_cap; int SZ; explicit MFGraph(int V) : INF(numeric_limits< flow_t >::max()), graph(V), max_cap(0), SZ(V) {} void add_edge(int from, int to, flow_t cap, int idx = -1) { max_cap = max(max_cap, cap); graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx}); graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx}); } bool build_augment_path(int s, int t, const flow_t &base) { min_cost.assign(graph.size(), -1); queue< int > que; min_cost[s] = 0; que.push(s); while(!que.empty() && min_cost[t] == -1) { int p = que.front(); que.pop(); for(auto &e : graph[p]) { if(e.cap >= base && min_cost[e.to] == -1) { min_cost[e.to] = min_cost[p] + 1; que.push(e.to); } } } return min_cost[t] != -1; } flow_t find_augment_path(int idx, const int t, flow_t base, flow_t flow) { if(idx == t) return flow; flow_t sum = 0; for(int &i = iter[idx]; i < (int)graph[idx].size(); i++) { edge &e = graph[idx][i]; if(e.cap >= base && min_cost[idx] < min_cost[e.to]) { flow_t d = find_augment_path(e.to, t, base, min(flow - sum, e.cap)); if(d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; sum += d; if(flow - sum < base) break; } } } return sum; } flow_t max_flow(int s, int t) { if(max_cap == flow_t(0)) return flow_t(0); flow_t flow = 0; for(int i = 63 - __builtin_clzll(max_cap); i >= 0; i--) { flow_t now = flow_t(1) << i; while(build_augment_path(s, t, now)) { iter.assign(graph.size(), 0); flow += find_augment_path(s, t, now, INF); } } return flow; } //after max_flow(s,t) vector min_cut(int s) { vector visited(SZ); queue que; que.push(s); while (!que.empty()) { int p = que.front(); que.pop(); visited[p] = true; for (auto e : graph[p]) { if (e.cap && !visited[e.to]) { visited[e.to] = true; que.push(e.to); } } } return visited; } void output() { for(int i = 0; i < graph.size(); i++) { for(auto &e : graph[i]) { if(e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl; } } } }; template< typename flow_t, typename cost_t > struct MCFGraph{ struct edge { int to; flow_t cap; cost_t cost; int rev; bool isrev; }; vector< vector< edge > > graph; vector< cost_t > potential, min_cost; vector< int > prevv, preve; const cost_t INF; MCFGraph(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {} void add_edge(int from, int to, flow_t cap, cost_t cost) { graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false}); graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true}); } cost_t min_cost_flow(int s, int t, flow_t f) { int V = (int) graph.size(); cost_t ret = 0; using Pi = pair< cost_t, int >; priority_queue< Pi, vector< Pi >, greater< Pi > > que; potential.assign(V, 0); preve.assign(V, -1); prevv.assign(V, -1); while(f > 0) { min_cost.assign(V, INF); que.emplace(0, s); min_cost[s] = 0; while(!que.empty()) { Pi p = que.top(); que.pop(); if(min_cost[p.second] < p.first) continue; for(int i = 0; i < (int)graph[p.second].size(); i++) { edge &e = graph[p.second][i]; cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to]; if(e.cap > 0 && min_cost[e.to] > nextCost) { min_cost[e.to] = nextCost; prevv[e.to] = p.second, preve[e.to] = i; que.emplace(min_cost[e.to], e.to); } } } if(min_cost[t] == INF) return -1; for(int v = 0; v < V; v++) potential[v] += min_cost[v]; flow_t addflow = f; for(int v = t; v != s; v = prevv[v]) { addflow = min(addflow, graph[prevv[v]][preve[v]].cap); } f -= addflow; ret += addflow * potential[t]; for(int v = t; v != s; v = prevv[v]) { edge &e = graph[prevv[v]][preve[v]]; e.cap -= addflow; graph[v][e.rev].cap += addflow; } } return ret; } void output() { for(int i = 0; i < graph.size(); i++) { for(auto &e : graph[i]) { if(e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl; } } } }; ll mod(ll a, ll mod) { return (a%mod+mod)%mod; } ll modpow(ll a,ll n,ll mod){ ll res=1; a%=mod; while (n>0){ if (n & 1) res*=a; a *= a; a%=mod; n >>= 1; res%=mod; } return res; } vector

prime_factorize(ll N) { vector

res; for (ll a = 2; a * a <= N; ++a) { if (N % a != 0) continue; ll ex = 0; while(N % a == 0){ ++ex; N /= a; } res.push_back({a, ex}); } if (N != 1) res.push_back({N, 1}); return res; } ll modinv(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a/b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } ll extGcd(ll a, ll b, ll &p, ll &q) { if (b == 0) { p = 1; q = 0; return a; } ll d = extGcd(b, a%b, q, p); q -= a/b * p; return d; } P ChineseRem(const vector &b, const vector &m) { ll r = 0, M = 1; for (int i = 0; i < (int)b.size(); ++i) { ll p, q; ll d = extGcd(M, m[i], p, q); if ((b[i] - r) % d != 0) return make_pair(0, -1); ll tmp = (b[i] - r) / d * p % (m[i]/d); r += M * tmp; M *= m[i]/d; } return make_pair(mod(r, M), M); } template struct Comb{ unordered_map,vector>> mp; int n_; ll p_, pm_; vector ord_, fact_; vector

pf; Comb(int n) : n_(n), ord_(n), fact_(n){ pf=prime_factorize(m); COMinit(); } void init(int n) { ord_.resize(n); fact_.resize(n); } void init(long long p, long long pm) { p_=p,pm_=pm; ord_[0]=ord_[1]=0; fact_[0]=fact_[1]=1; auto&[pms,ord,fac]=mp[p]; pms=pm; ord.resize(n_); fac.resize(n_); ord[0]=ord[1]=0; fac[0]=fac[1]=1; for (int i=2;i vb(sz), vm(sz); for (int i=0;i> &G,int v,vector &seen){ seen[v]=true; for(auto nv : G[v]){ if(seen[nv]) continue; dfs(G,nv,seen); } } template void dijkstra(const Graph &G,int s,vector &dist,vector &cnt){ int N = G.size(); dist.assign(N, INF); cnt.assign(N,0); priority_queue, greater

> pq; dist[s] = 0; cnt[s] = 1; pq.emplace(dist[s], s); while (!pq.empty()){ P p = pq.top(); pq.pop(); int v = p.second; if (dist[v] < p.first){ continue; } for (auto e : G[v]){ if (dist[e.to] > dist[v] + e.cost){ dist[e.to] = dist[v] + e.cost; pq.emplace(dist[e.to], e.to); cnt[e.to]=cnt[v]; }else if (dist[e.to] == dist[v] + e.cost){ cnt[e.to]+=cnt[v]; } } } } void bfs(const vector> &G,int s,vector &dist){ int N=G.size(); dist.assign(N,-1); dist[s]=0; deque dq; dq.push_back(s); while(dq.size()){ int v=dq[0]; dq.pop_front(); for(auto nv : G[v]){ if(dist[nv]!=-1) continue; dist[nv]=dist[v]+1; dq.push_back(nv); } } } vector enum_divisors(ll N){ vector res; for (ll i = 1; i * i <= N; ++i){ if (N % i == 0){ res.push_back(i); // 重複しないならば i の相方である N/i も push if (N/i != i) res.push_back(N/i); } } // 小さい順に並び替える sort(res.begin(), res.end()); return res; } ll Euler(ll n){ vector> pf=prime_factorize(n); ll res=n; for(auto p : pf){ res*=(p.first-1); res/=p.first; } return res; } //dist must be initialized with INF void warshall_floyd(vector> &dist,int n){ for(int i=0;i Eratosthenes(int N) { vector isprime(N+1,1); isprime[1]=0; for (int p=2;p<=N;++p){ if (!isprime[p]) continue; for (int q=p*2;q<=N;q+=p) { isprime[q]=0; } } return isprime; } //log X 素因数分解 struct PrimeFact{ vector era; PrimeFact(int maxA) : era(maxA+1,-1){ for(int p=2;p<=maxA;++p){ if(era[p]!=-1) continue; for(int q=p;q<=maxA;q+=p){ era[q]=p; } } } vector

prime_fact(int x){ vector

res; while(1& a, bool inverse){ int n = a.size(); static bool prepared = false; static vector z(30); if(!prepared){ prepared = true; for(int i=0; i<30; i++){ Real ang = 2*PI/(1 << (i+1)); z[i] = Comp(cos(ang), sin(ang)); } } for (size_t i = 0, j = 1; j < n; ++j) { for (size_t k = n >> 1; k > (i ^= k); k >>= 1); if (i > j) swap(a[i], a[j]); } for (int i = 0, t = 1; t < n; ++i, t <<= 1) { Comp bw = z[i]; if(inverse) bw = bw.conj(); for (int i = 0; i < n; i += t * 2) { Comp w(1,0); for (int j = 0; j < t; ++j) { int l = i + j, r = i + j + t; Comp c = a[l], d = a[r] * w; a[l] = c + d; a[r] = c - d; w = w * bw; } } } if(inverse) for(int i=0; i vector mul(vector &a, vector &b, bool issquare){ int deg = a.size() + b.size(); int n = 1; while(n < deg) n <<= 1; vector fa,fb; fa.resize(n); fb.resize(n); for(int i=0;i res(n); for(int i=0;i 1) divs[cnt++] = x; for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (modpow(g, (mod - 1) / divs[i], mod) == 1) { ok = false; break; } } if (ok) return g; } } int get_fft_size(int N, int M) { int size_a = 1, size_b = 1; while (size_a < N) size_a <<= 1; while (size_b < M) size_b <<= 1; return max(size_a, size_b) << 1; } constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } template struct fft_info{ static constexpr int rank2 = bsf_constexpr(mint::getmod() - 1); std::array root; // root[i]^(2^i) == 1 std::array iroot; // root[i] * iroot[i] == 1 std::array rate2; std::array irate2; std::array rate3; std::array irate3; int g; fft_info(){ int MOD=mint::getmod(); g=calc_primitive_root(MOD); root[rank2] = modpow(mint(g),(MOD - 1) >> rank2); iroot[rank2] = modinv(root[rank2]); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } }; int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // number-theoretic transform template void trans(std::vector& a) { int n = int(a.size()); int h = ceil_pow2(n); int MOD=a[0].getmod(); static const fft_info info; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= info.rate2[bsf(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * MOD * MOD; auto a0 = 1ULL * a[i + offset].val; auto a1 = 1ULL * a[i + offset + p].val * rot.val; auto a2 = 1ULL * a[i + offset + 2 * p].val * rot2.val; auto a3 = 1ULL * a[i + offset + 3 * p].val * rot3.val; auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val * imag.val; auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= info.rate3[bsf(~(unsigned int)(s))]; } len += 2; } } } template void trans_inv(std::vector& a) { int n = int(a.size()); int h = ceil_pow2(n); static const fft_info info; int MOD=a[0].getmod(); int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(MOD + l.val - r.val) * irot.val; ; } if (s + 1 != (1 << (len - 1))) irot *= info.irate2[bsf(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val; auto a1 = 1ULL * a[i + offset + 1 * p].val; auto a2 = 1ULL * a[i + offset + 2 * p].val; auto a3 = 1ULL * a[i + offset + 3 * p].val; auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val).val; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val; a[i + offset + 3 * p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val; } if (s + 1 != (1 << (len - 2))) irot *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } } } // for garner static constexpr int MOD0 = 754974721; static constexpr int MOD1 = 167772161; static constexpr int MOD2 = 469762049; using mint0 = Fp; using mint1 = Fp; using mint2 = Fp; static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1); static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2); static const mint2 imod01 = 187290749; // imod1 / MOD0; // small case (T = mint, long long) template vector naive_mul (const vector &A, const vector &B) { if (A.empty() || B.empty()) return {}; int N = (int)A.size(), M = (int)B.size(); vector res(N + M - 1); for (int i = 0; i < N; ++i) for (int j = 0; j < M; ++j) res[i + j] += A[i] * B[j]; return res; } // mint template vector mul(vector A,vector B) { if (A.empty() || B.empty()) return {}; int n = int(A.size()), m = int(B.size()); if (min(n, m) < 30) return naive_mul(A, B); int MOD = A[0].getmod(); int z = 1 << ceil_pow2(n + m - 1); if (MOD == 998244353) { A.resize(z); trans(A); B.resize(z); trans(B); for (int i = 0; i < z; i++) { A[i] *= B[i]; } trans_inv(A); A.resize(n + m - 1); mint iz = modinv(mint(z)); for (int i = 0; i < n + m - 1; i++) A[i] *= iz; return A; } vector a0(z, 0), b0(z, 0); vector a1(z, 0), b1(z, 0); vector a2(z, 0), b2(z, 0); for (int i = 0; i < n; ++i) a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val; for (int i = 0; i < m; ++i) b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val; trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2); for (int i = 0; i < z; ++i) { a0[i] *= b0[i]; a1[i] *= b1[i]; a2[i] *= b2[i]; } trans_inv(a0), trans_inv(a1), trans_inv(a2); static const mint mod0 = MOD0, mod01 = mod0 * MOD1; mint0 i0=modinv(mint0(z)); mint1 i1=modinv(mint1(z)); mint2 i2=modinv(mint2(z)); vector res(n + m - 1); for (int i = 0; i < n + m - 1; ++i) { a0[i]*=i0; a1[i]*=i1; a2[i]*=i2; int y0 = a0[i].val; int y1 = (imod0 * (a1[i] - y0)).val; int y2 = (imod01 * (a2[i] - y0) - imod1 * y1).val; res[i] = mod01 * y2 + mod0 * y1 + y0; } return res; } }; // Formal Power Series template struct FPS : vector { using vector::vector; // constructor FPS(const vector& r) : vector(r) {} // core operator inline FPS pre(int siz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), siz)); } inline FPS rev() const { FPS res = *this; reverse(begin(res), end(res)); return res; } inline FPS& normalize() { while (!this->empty() && this->back() == 0) this->pop_back(); return *this; } // basic operator inline FPS operator - () const noexcept { FPS res = (*this); for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i]; return res; } inline FPS operator + (const mint& v) const { return FPS(*this) += v; } inline FPS operator + (const FPS& r) const { return FPS(*this) += r; } inline FPS operator - (const mint& v) const { return FPS(*this) -= v; } inline FPS operator - (const FPS& r) const { return FPS(*this) -= r; } inline FPS operator * (const mint& v) const { return FPS(*this) *= v; } inline FPS operator * (const FPS& r) const { return FPS(*this) *= r; } inline FPS operator / (const mint& v) const { return FPS(*this) /= v; } inline FPS operator << (int x) const { return FPS(*this) <<= x; } inline FPS operator >> (int x) const { return FPS(*this) >>= x; } inline FPS& operator += (const mint& v) { if (this->empty()) this->resize(1); (*this)[0] += v; return *this; } inline FPS& operator += (const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i]; return this->normalize(); } inline FPS& operator -= (const mint& v) { if (this->empty()) this->resize(1); (*this)[0] -= v; return *this; } inline FPS& operator -= (const FPS& r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i]; return this->normalize(); } inline FPS& operator *= (const mint& v) { for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v; return *this; } inline FPS& operator *= (const FPS& r) { return *this = NTT::mul((*this), r); } inline FPS& operator /= (const mint& v) { assert(v != 0); mint iv = modinv(v); for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv; return *this; } inline FPS& operator <<= (int x) { FPS res(x, 0); res.insert(res.end(), begin(*this), end(*this)); return *this = res; } inline FPS& operator >>= (int x) { FPS res; res.insert(res.end(), begin(*this) + x, end(*this)); return *this = res; } inline mint eval(const mint& v){ mint res = 0; for (int i = (int)this->size()-1; i >= 0; --i) { res *= v; res += (*this)[i]; } return res; } inline friend FPS gcd(const FPS& f, const FPS& g) { if (g.empty()) return f; return gcd(g, f % g); } // advanced operation // df/dx inline friend FPS diff(const FPS& f) { int n = (int)f.size(); FPS res(n-1); for (int i = 1; i < n; ++i) res[i-1] = f[i] * i; return res; } // \int f dx inline friend FPS integral(const FPS& f) { int n = (int)f.size(); FPS res(n+1, 0); for (int i = 0; i < n; ++i) res[i+1] = f[i] / (i+1); return res; } // inv(f), f[0] must not be 0 inline friend FPS inv(const FPS& f, int deg) { assert(f[0] != 0); if (deg < 0) deg = (int)f.size(); FPS res({mint(1) / f[0]}); for (int i = 1; i < deg; i <<= 1) { res = (res + res - res * res * f.pre(i << 1)).pre(i << 1); } res.resize(deg); return res; } inline friend FPS inv(const FPS& f) { return inv(f, f.size()); } // division, r must be normalized (r.back() must not be 0) inline FPS& operator /= (const FPS& r) { assert(!r.empty()); assert(r.back() != 0); this->normalize(); if (this->size() < r.size()) { this->clear(); return *this; } int need = (int)this->size() - (int)r.size() + 1; *this = ((*this).rev().pre(need) * inv(r.rev(), need)).pre(need).rev(); return *this; } inline FPS& operator %= (const FPS &r) { assert(!r.empty()); assert(r.back() != 0); this->normalize(); FPS q = (*this) / r; return *this -= q * r; } inline FPS operator / (const FPS& r) const { return FPS(*this) /= r; } inline FPS operator % (const FPS& r) const { return FPS(*this) %= r; } // log(f) = \int f'/f dx, f[0] must be 1 inline friend FPS log(const FPS& f, int deg) { assert(f[0] == 1); FPS res = integral(diff(f) * inv(f, deg)); res.resize(deg); return res; } inline friend FPS log(const FPS& f) { return log(f, f.size()); } // exp(f), f[0] must be 0 inline friend FPS exp(const FPS& f, int deg) { assert(f[0] == 0); FPS res(1, 1); for (int i = 1; i < deg; i <<= 1) { res = res * (f.pre(i<<1) - log(res, i<<1) + 1).pre(i<<1); } res.resize(deg); return res; } inline friend FPS exp(const FPS& f) { return exp(f, f.size()); } // pow(f) = exp(e * log f) inline friend FPS pow(const FPS& f, long long e, int deg) { long long i = 0; while (i < (int)f.size() && f[i] == 0) ++i; if (i == (int)f.size()) return FPS(deg, 0); if (i * e >= deg) return FPS(deg, 0); mint k = f[i]; FPS res = exp(log((f >> i) / k, deg) * e, deg) * modpow(k, e) << (e * i); res.resize(deg); return res; } inline friend FPS pow(const FPS& f, long long e) { return pow(f, e, f.size()); } // sqrt(f), f[0] must be 1 inline friend FPS sqrt_base(const FPS& f, int deg) { assert(f[0] == 1); mint inv2 = mint(1) / 2; FPS res(1, 1); for (int i = 1; i < deg; i <<= 1) { res = (res + f.pre(i << 1) * inv(res, i << 1)).pre(i << 1); for (mint& x : res) x *= inv2; } res.resize(deg); return res; } inline friend FPS sqrt_base(const FPS& f) { return sqrt_base(f, f.size()); } FPS taylor_shift(mint c) const { int n = (int) this->size(); vector fact(n), rfact(n); fact[0] = rfact[0] = mint(1); for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * mint(i); rfact[n - 1] = mint(1) / fact[n - 1]; for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * mint(i); FPS p(*this); for(int i = 0; i < n; i++) p[i] *= fact[i]; p = p.rev(); FPS bs(n, mint(1)); for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1]; p = (p * bs).pre(n); p = p.rev(); for(int i = 0; i < n; i++) p[i] *= rfact[i]; return p; } }; struct SegP{ int n; vector

dat; SegP(){} SegP(vector

v){ int sz=v.size(); n=1; while(n=0;i--) dat[i]=min(dat[2*i+1],dat[2*i+2]); } void resize(int N){ n=1; while(n v){ for(int i=0;i=0;i--) dat[i]=min(dat[2*i+1],dat[2*i+2]); } void update(int k,ll x){ k+=(n-1); dat[k]={x,k}; while(k>0){ k=(k-1)/2; dat[k]=min(dat[2*k+1],dat[2*k+2]); } } P query(int l,int r,int k=0,int a=0,int b=-1){ if(b<0) b=n; if(b<=l||r<=a) return make_pair(1e9,1e9); if(l<=a&&b<=r) return dat[k]; P vl=query(l,r,2*k+1,a,(a+b)/2); P vr=query(l,r,2*k+2,(a+b)/2,b); return min(vl,vr); } }; void Edfs(const Graph &G,int v,int p,vector &ET){ ET.push_back(v); for(auto nv : G[v]){ if(nv.to==p) continue; Edfs(G,nv.to,v,ET); ET.push_back(v); } } void Ddfs(const Graph &G,int v,int p,vector &depth){ for(auto nv : G[v]){ if(nv.to==p) continue; depth[nv.to]=depth[v]+1; Ddfs(G,nv.to,v,depth); } } //s=0 void Tbfs(const Graph &G,int s,vector &dist){ int N=G.size(); dist.assign(N,-1); dist[s]=0; deque dq; dq.push_back(s); while(dq.size()){ int v=dq[0]; dq.pop_front(); for(auto nv : G[v]){ if(dist[nv.to]!=-1) continue; dist[nv.to]=dist[v]+nv.cost; dq.push_back(nv.to); } } } //first : p=-1 void dfs_sz(const vector> &G,int v,int p,vector &sz){ int ret=1; for(int nv : G[v]){ if(nv==p) continue; dfs_sz(G,nv,v,sz); ret+=sz[nv]; } sz[v]=ret; } struct LCA{ vector fst,ET,depth; vector

pv; SegP seg; vector dist; LCA(const Graph G){ int n=G.size(); fst.assign(n,-1); depth.resize(n); Edfs(G,0,-1,ET); Ddfs(G,0,-1,depth); for(int i=0;ifst[v]) swap(u,v); P ret=seg.query(fst[u],fst[v]+1); return ret; } ll dis(int u,int v){ P ca=lca(u,v); return dist[u]+dist[v]-2*dist[ca.second]; } }; vector topo_sort(const vector> &G) { vector ret; int n = (int)G.size(); vector ind(n); for (int i = 0; i < n; i++) { for (auto e : G[i]) { ind[e]++; } } priority_queue,greater> que; for (int i = 0; i < n; i++) { if (ind[i] == 0) { que.push(i); } } while (!que.empty()) { int now = que.top(); ret.push_back(now); que.pop(); for (auto e : G[now]) { ind[e]--; if (ind[e] == 0) { que.push(e); } } } return ret; } template FPS product(vector> a){ int siz=1; while(siz> res(siz*2-1,{1}); for(int i=0;i=0;--i){ res[i]=res[2*i+1]*res[2*i+2]; } return res[0]; } template FPS inv_sum(vector> f){ int siz=1; while(siz> mol(siz*2-1),dem(siz*2-1,{1}); for(size_t i=0;i=0;--i){ dem[i]=dem[2*i+1]*dem[2*i+2]; mol[i]=mol[2*i+1]*dem[2*i+2]+mol[2*i+2]*dem[2*i+1]; } mol[0]*=inv(dem[0]); return mol[0]; } template FPS inv(FPS A, int n) { // Q-(1/Q-A)/(-Q^{-2}) FPS B{mint(1)/A[0]}; while (sz(B) < n) { int x = 2*sz(B); B = RSZ(2*B-RSZ(A,x)*B*B,x); } return RSZ(B,n); } template FPS rev(FPS p) { reverse(p.begin(),p.end()); return p; } template FPS RSZ(FPS p, int x) { p.resize(x); return p; } template pair,FPS> divi(const FPS& f, const FPS& g) { if (sz(f) < sz(g)) return {{},f}; FPS q = NTT::mul(inv(rev(g),sz(f)-sz(g)+1),rev(f)); q = rev(RSZ(q,sz(f)-sz(g)+1)); auto r = RSZ(f-NTT::mul(q,g),sz(g)-1); return {q,r}; } template void segProd(vector>& stor, vector& v, int ind, int l, int r) { // v -> places to evaluate at if (l == r) { stor[ind] = {-v[l],1}; return; } int m = (l+r)/2; segProd(stor,v,2*ind,l,m); segProd(stor,v,2*ind+1,m+1,r); stor[ind] = stor[2*ind]*stor[2*ind+1]; } template void evalAll(vector>& stor, vector& res,FPS v, int ind = 1) { v = divi(v,stor[ind]).second; if (sz(stor[ind]) == 2) { res.push_back(sz(v)?v[0]:mint(0)); return; } evalAll(stor,res,v,2*ind); evalAll(stor,res,v,2*ind+1); } template vector multieval(FPS v, vector p) { vector> stor(4*sz(p)); segProd(stor,p,1,0,sz(p)-1); vector res; evalAll(stor,res,v); return res; } template FPS combAll(vector>& stor, FPS& dems, int ind, int l, int r) { if (l == r) return {dems[l]}; int m = (l+r)/2; FPS a = combAll(stor,dems,2*ind,l,m), b = combAll(stor,dems,2*ind+1,m+1,r); return a*stor[2*ind+1]+b*stor[2*ind]; } template FPS interpolate(vector x,vector y) { int n=sz(x); vector> a; for(int i=0;i b={-x[i],mint(1)}; a.push_back(b); } FPS g=product(a); FPS g_=diff(g); vector evaled=multieval(g_,x); vector> c(n); for(int i=0;i d={-x[i],1}; c[i]=d*evaled[i]; } int siz=1; while(siz> mol(siz*2-1),dem(siz*2-1,{1}); for(size_t i=0;i=0;--i){ dem[i]=dem[2*i+1]*dem[2*i+2]; mol[i]=mol[2*i+1]*dem[2*i+2]+mol[2*i+2]*dem[2*i+1]; } mol[0]*=inv(dem[0]); return RSZ(g*mol[0],n); } template struct Perm{ unordered_map,vector>> mp; int n_; ll p_, pm_; vector ord_, fact_; vector

pf; Perm(int n) : n_(n), ord_(n), fact_(n) { pf=prime_factorize(m); PERMinit(); } void init(int n) { ord_.resize(n); fact_.resize(n); } void init(long long p, long long pm) { p_=p,pm_=pm; ord_[0]=ord_[1]=0; fact_[0]=fact_[1]=1; auto&[pms,ord,fac]=mp[p]; pms=pm; ord.resize(n_); fac.resize(n_); ord[0]=ord[1]=0; fac[0]=fac[1]=1; for (int i=2;i vb, vm; for (auto ps : pf) { long long p = ps.first, e = ps.second; long long pm = pow(p,e); long long b = 1; b *= perm(n, k ,p) % pm; b %= pm; vm.push_back(pm); vb.push_back(b); } auto res = ChineseRem(vb,vm); return res.first; } }; struct HLD{ Graph G; vector siz,a,ind,edge,dep,vertex,par; void dfs_sz(int v,int p){ int ret=1; for(auto nv : G[v]){ if(nv.to==p) continue; dfs_sz(nv.to,v); ret+=siz[nv.to]; } siz[v]=ret; } void Ddfs(int v,int p){ for(auto nv : G[v]){ if(nv.to==p) continue; dep[nv.to]=dep[v]+1; Ddfs(nv.to,v); } } void hld(int v,int k,int p){ ind[v]=vertex.size(); a[v]=k; vertex.push_back(v); if(G[v].size()==1&&v!=0) return; int mxind=-1; int mx=0; for(int i=0;i<(int)G[v].size();i++){ auto nv=G[v][i]; if(nv.to==p) continue; if(siz[nv.to]>mx){ mx=siz[nv.to]; mxind=i; } } hld(G[v][mxind].to,k,v); for(int i=0;i<(int)G[v].size();i++){ auto nv=G[v][i]; if(nv.to==p) continue; if(i!=mxind) hld(nv.to,nv.to,v); } } void getpar(int v,int p){ par[v]=p; for(auto nv : G[v]){ if(nv.to==p) continue; getpar(nv.to,v); edge[ind[nv.to]]=nv.cost; } } HLD(const Graph &g) : siz((int)g.size()), a((int)g.size()), ind((int)g.size()), edge((int)g.size()), dep((int)g.size()), par((int)g.size()){ G=g; dfs_sz(0,-1); hld(0,0,-1); getpar(0,-1); Ddfs(0,-1); } //[l,r] pair getsubtree(int v){ return make_pair(ind[v],ind[v]+siz[v]-1); } //[l,r]... vector> getpath(int u,int v){ vector> ret; while(a[u]!=a[v]){ if(dep[a[u]]<=dep[a[v]]){ ret.push_back({ind[a[v]],ind[v]}); v=par[a[v]]; }else{ ret.push_back({ind[a[u]],ind[u]}); u=par[a[u]]; } } ret.push_back({min(ind[u],ind[v]),max(ind[u],ind[v])}); return ret; } int lca(int u,int v){ vector> path=getpath(u,v); return vertex[path[path.size()-1].first]; } }; template vector compress(vector &x){ vector vals=x; vector res; sort(vals.begin(),vals.end()); auto it=unique(vals.begin(),vals.end()); vals.erase(it,vals.end()); for(auto xx : x){ int ret=lower_bound(vals.begin(),vals.end(),xx) - vals.begin(); res.push_back(ret); } return res; } /** * @brief Succinct Indexable Dictionary(完備辞書) */ struct SuccinctIndexableDictionary { size_t length; size_t blocks; vector< unsigned > bit, sum; SuccinctIndexableDictionary() = default; SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) { bit.assign(blocks, 0U); sum.assign(blocks, 0U); } void set(int k) { bit[k >> 5] |= 1U << (k & 31); } void build() { sum[0] = 0U; for(int i = 1; i < blocks; i++) { sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } } bool operator[](int k) { return (bool((bit[k >> 5] >> (k & 31)) & 1)); } int rank(int k) { return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1))); } int rank(bool val, int k) { return (val ? rank(k) : k - rank(k)); } }; /* * @brief Wavelet Matrix(ウェーブレット行列) * @docs docs/wavelet-matrix.md */ template< typename T, int MAXLOG > struct WaveletMatrix { size_t length; SuccinctIndexableDictionary matrix[MAXLOG]; int mid[MAXLOG]; WaveletMatrix() = default; WaveletMatrix(vector< T > v) : length(v.size()) { vector< T > l(length), r(length); for(int level = MAXLOG - 1; level >= 0; level--) { matrix[level] = SuccinctIndexableDictionary(length + 1); int left = 0, right = 0; for(int i = 0; i < length; i++) { if(((v[i] >> level) & 1)) { matrix[level].set(i); r[right++] = v[i]; } else { l[left++] = v[i]; } } mid[level] = left; matrix[level].build(); v.swap(l); for(int i = 0; i < right; i++) { v[left + i] = r[i]; } } } pair< int, int > succ(bool f, int l, int r, int level) { return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f}; } // v[k] T access(int k) { T ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { bool f = matrix[level][k]; if(f) ret |= T(1) << level; k = matrix[level].rank(f, k) + mid[level] * f; } return ret; } T operator[](const int &k) { return access(k); } // count i s.t. (0 <= i < r) && v[i] == x int rank(const T &x, int r) { int l = 0; for(int level = MAXLOG - 1; level >= 0; level--) { tie(l, r) = succ((x >> level) & 1, l, r, level); } return r - l; } // k-th(0-indexed) smallest number in v[l,r) T kth_smallest(int l, int r, int k) { assert(0 <= k && k < r - l); T ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l); bool f = cnt <= k; if(f) { ret |= T(1) << level; k -= cnt; } tie(l, r) = succ(f, l, r, level); } return ret; } // k-th(0-indexed) largest number in v[l,r) T kth_largest(int l, int r, int k) { return kth_smallest(l, r, r - l - k - 1); } // count i s.t. (l <= i < r) && (v[i] < upper) int range_freq(int l, int r, T upper) { int ret = 0; for(int level = MAXLOG - 1; level >= 0; level--) { bool f = ((upper >> level) & 1); if(f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l); tie(l, r) = succ(f, l, r, level); } return ret; } // count i s.t. (l <= i < r) && (lower <= v[i] < upper) int range_freq(int l, int r, T lower, T upper) { return range_freq(l, r, upper) - range_freq(l, r, lower); } // max v[i] s.t. (l <= i < r) && (v[i] < upper) T prev_value(int l, int r, T upper) { int cnt = range_freq(l, r, upper); return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1); } // min v[i] s.t. (l <= i < r) && (lower <= v[i]) T next_value(int l, int r, T lower) { int cnt = range_freq(l, r, lower); return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt); } }; template< typename T, int MAXLOG > struct CompressedWaveletMatrix { WaveletMatrix< int, MAXLOG > mat; vector< T > ys; CompressedWaveletMatrix(const vector< T > &v) : ys(v) { sort(begin(ys), end(ys)); ys.erase(unique(begin(ys), end(ys)), end(ys)); vector< int > t(v.size()); for(int i = 0; i < v.size(); i++) t[i] = get(v[i]); mat = WaveletMatrix< int, MAXLOG >(t); } inline int get(const T& x) { return lower_bound(begin(ys), end(ys), x) - begin(ys); } T access(int k) { return ys[mat.access(k)]; } T operator[](const int &k) { return access(k); } int rank(const T &x, int r) { auto pos = get(x); if(pos == ys.size() || ys[pos] != x) return 0; return mat.rank(pos, r); } T kth_smallest(int l, int r, int k) { return ys[mat.kth_smallest(l, r, k)]; } T kth_largest(int l, int r, int k) { return ys[mat.kth_largest(l, r, k)]; } int range_freq(int l, int r, T upper) { return mat.range_freq(l, r, get(upper)); } int range_freq(int l, int r, T lower, T upper) { return mat.range_freq(l, r, get(lower), get(upper)); } T prev_value(int l, int r, T upper) { auto ret = mat.prev_value(l, r, get(upper)); return ret == -1 ? T(-1) : ys[ret]; } T next_value(int l, int r, T lower) { auto ret = mat.next_value(l, r, get(lower)); return ret == -1 ? T(-1) : ys[ret]; } }; template vector shortest_path_faster_algorithm(const Graph &G, int s) { vector dist(G.size(), INF); vector pending(G.size(), 0), times(G.size(), 0); queue que; que.emplace(s); pending[s]=true; ++times[s]; dist[s]=0; while(!que.empty()) { int p = que.front(); que.pop(); pending[p] = false; for(auto &e : G[p]) { T next_cost = dist[p] + e.cost; if(next_cost >= dist[e.to]) continue; dist[e.to] = next_cost; if(!pending[e.to]) { if(++times[e.to] >= (int)G.size()) return vector(); pending[e.to] = true; que.emplace(e.to); } } } return dist; } // RAQ+RSQ using X = ll; //dat using M = ll; //lazy auto fx = [](X x1, X x2) -> X { return x1 + x2; }; //dat×dat 行う二項演算 auto fa = [](X x, M m) -> X { return x + m; }; //datをlazyで更新する演算 auto fm = [](M m1, M m2) -> M { return m1 + m2; }; //lazyの伝達を行う演算 auto fp = [](M m, int n) -> M { return m * n; }; //p(m,n)=m*m*...*m 子のdatをlazyで更新した時のdatの作用 X ex = 0; //x*ex=x (Xの単位元) dat M em = 0; //x*em=x (Mの単位元) lazy using mint=Fp<998244353>; int main(){ int n,q; cin>>n>>q; vector> f(n,FPS(2)); for(int i=0;i>a; f[i][0]=a-mint(1); f[i][1]=1; } FPS g=product(f); for(int i=0;i>b; cout<