#include using namespace std; // #include // using namespace atcoder; using ll = long long; template using V = std::vector; #define REP(i, n) for (ll i=(ll)0; i<(ll)(n); i++) #define REPS(i, s, n) for (ll i=(ll)(s); i<(ll)(n); i++) #define RREP(i, n) for (ll i=(ll)(n); i>(ll)0; i--) #define RREPS(i, s, n) for (ll i=(ll)(n); i>(ll)(s); i--) #define ALL(c) std::begin((c)), std::end((c)) struct io {io() {cin.tie(0); ios::sync_with_stdio(0);} } caller; template struct DinicCapacityScaling{ static_assert(is_integral::value, "template parameter T must be integral type"); private: const T INF; struct edge{ int to; T cap; int rev; bool isrev; int idx; }; vector> graph; vector min_cost, iter; T max_cap; bool build_augment_path(int s, int t, const T &base){ min_cost.assign(graph.size(), -1); queue que; min_cost[s] = 0; que.push(s); while (!que.empty() && min_cost[t] == -1){ int p = que.front(); que.pop(); for (auto &e : graph[p]){ if (e.cap >= base && min_cost[e.to] == -1){ min_cost[e.to] = min_cost[p] + 1; que.push(e.to); } } } return min_cost[t] != -1; } T find_augment_path(int idx, const int t, T base, T flow){ if (idx == t) return flow; T sum = 0; for(int &i = iter[idx]; i < (int)graph[idx].size(); i++){ edge &e = graph[idx][i]; if (e.cap >= base && min_cost[idx] < min_cost[e.to]){ T d = find_augment_path(e.to, t, base, min(flow - sum, e.cap)); if (d > 0){ e.cap -= d; graph[e.to][e.rev].cap += d; sum += d; if (flow - sum < base) break; } } } return sum; } public: explicit DinicCapacityScaling(int V) : INF(numeric_limits::max()), graph(V), max_cap(0) {} void add_edge(int from, int to, T cap, int idx = -1){ max_cap = max(max_cap, cap); graph[from].emplace_back((edge){to, cap, (int)graph[to].size(), false, idx}); graph[to].emplace_back((edge){from, 0, (int)graph[from].size() - 1, true, idx}); } T max_flow(int s, int t){ if (max_cap == T(0)) return T(0); T flow = 0; for (int i = 63 - __builtin_clzll(max_cap); i >= 0; i--){ T now = T(1) << i; while (build_augment_path(s, t, now)){ iter.assign(graph.size(), 0); flow += find_augment_path(s, t, now, INF); } } return flow; } void output(){ for (int i = 0; i < (int)graph.size(); i++){ for (auto &e : graph[i]){ if (e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl; } } } }; int main(){ int w, n, m; cin >> w >> n; V j(n); REP (i, n) cin >> j[i]; cin >> m; V c(m); REP (i, m) cin >> c[i]; DinicCapacityScaling mf(n + m + 2); REP (i, n) mf.add_edge(n + m, i, j[i]); REP (i, m) mf.add_edge(i + n, n + m + 1, c[i]); int q; REP (i, m){ cin >> q; V x(q); REP (j, q) cin >> x[j]; REP (j, n){ if (!binary_search(ALL(x), j + 1)){ mf.add_edge(j, i + n, c[i]); } } } if (mf.max_flow(n + m, n + m + 1) >= w) cout << "SHIROBAKO" << endl; else cout << "BANSAKUTSUKITA" << endl; return 0; }