#ifndef LOCAL #define FAST_IO #endif // ===== template.hpp ===== #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i) #define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; using i32 = signed int; using i64 = signed long long; using i128 = __int128_t; using f64 = double; using f80 = long double; template using Vec = vector; template bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } istream &operator>>(istream &is, i128 &x) { i64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, i128 x) { os << (i64) x; return os; } istream &operator>>(istream &is, u128 &x) { u64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, u128 x) { os << (u64) x; return os; } [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; struct SetUpIO { SetUpIO() { #ifdef FAST_IO ios::sync_with_stdio(false); cin.tie(nullptr); #endif cout << fixed << setprecision(15); } } set_up_io; // ===== template.hpp ===== #ifdef DEBUGF #include "cpl/template/debug.hpp" #else #define DBG(x) (void) 0 #endif // ===== fenwick_tree.hpp ===== #include #include // ===== operations.hpp ===== #include #include template struct Add { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs + rhs; } static Value inv(const Value &x) { return -x; } }; template struct Mul { using Value = T; static Value id() { return Value(1); } static Value op(const Value &lhs, const Value &rhs) { return lhs * rhs; } static Value inv(const Value &x) { return Value(1) / x; } }; template struct Min { using Value = T; static Value id() { return std::numeric_limits::max(); } static Value op(const Value &lhs, const Value &rhs) { return std::min(lhs, rhs); } }; template struct Max { using Value = T; static Value id() { return std::numeric_limits::min(); } static Value op(const Value &lhs, const Value &rhs) { return std::max(lhs, rhs); } }; template struct Xor { using Value = T; static Value id() { return T(0); } static Value op(const Value &lhs, const Value &rhs) { return lhs ^ rhs; } static Value inv(const Value &x) { return x; } }; template struct Reversible { using Value = std::pair; static Value id() { return Value(Monoid::id(), Monoid::id()); } static Value op(const Value &v1, const Value &v2) { return Value( Monoid::op(v1.first, v2.first), Monoid::op(v2.second, v1.second)); } }; // ===== operations.hpp ===== template class FenwickTree { public: using Value = typename CommutativeGroup::Value; private: std::vector data; public: FenwickTree(int n) : data(n, CommutativeGroup::id()) {} void add(int idx, const Value &x) { assert(idx >= 0 && idx < (int) data.size()); for (; idx < (int) data.size(); idx |= idx + 1) { data[idx] = CommutativeGroup::op(data[idx], x); } } Value sum(int r) const { assert(r >= 0 && r <= (int) data.size()); Value ret = CommutativeGroup::id(); for (; r > 0; r &= r - 1) { ret = CommutativeGroup::op(ret, data[r - 1]); } return ret; } Value sum(int l, int r) const { assert(l >= 0 && l <= r && r <= (int) data.size()); return CommutativeGroup::op(sum(r), CommutativeGroup::inv(sum(l))); } }; template using FenwickTreeAdd = FenwickTree>; // ===== fenwick_tree.hpp ===== class OfflineRectangleAddPointGet { i32 n; Vec>> add, sub; i32 q; Vec>> queries; public: OfflineRectangleAddPointGet(i32 n) : n(n), add(n + 1), sub(n + 1), q(0), queries(n) {} void add_rect(i32 xl, i32 xr, i32 yl, i32 yr) { assert(0 <= xl && xl <= xr && xr <= n); assert(0 <= yl && yl <= yr && yr <= n); add[xl].emplace_back(yl, yr); sub[xr].emplace_back(yl, yr); } void add_query(i32 x, i32 y) { assert(0 <= x && x < n); assert(0 <= y && y < n); queries[x].emplace_back(y, q++); } Vec solve() const { FenwickTreeAdd fw(n + 1); Vec ans(q, 0); REP(i, n) { for (auto [l, r] : add[i]) { fw.add(l, 1); fw.add(r, -1); } for (auto [l, r] : sub[i]) { fw.add(l, -1); fw.add(r, 1); } for (auto [y, qi] : queries[i]) { ans[qi] = fw.sum(y + 1); } } return ans; } }; int main() { i32 n, m, q; cin >> n >> m >> q; Vec p(n); Vec is_ac(n); REP(i, n) { cin >> p[i]; --p[i]; string res; cin >> res; is_ac[i] = (i32) (res == "AC"); } Vec l(q), r(q); REP(i, q) { cin >> l[i] >> r[i]; --l[i]; } Vec prev_ac(n, -1), next_ac(n, n); { Vec pv(m, -1); REP(i, n) { prev_ac[i] = pv[p[i]]; if (is_ac[i]) { pv[p[i]] = i; } } } { Vec nt(m, n); PER(i, n) { next_ac[i] = nt[p[i]]; if (is_ac[i]) { nt[p[i]] = i; } } } OfflineRectangleAddPointGet ac(n + 1), pena(n + 1); REP(i, n) { if (is_ac[i]) { ac.add_rect(prev_ac[i] + 1, i + 1, i + 1, n + 1); } else { pena.add_rect(prev_ac[i] + 1, i + 1, next_ac[i] + 1, n + 1); } } REP(i, q) { ac.add_query(l[i], r[i]); pena.add_query(l[i], r[i]); } Vec acc = ac.solve(), penac = pena.solve(); REP(i, q) { cout << acc[i] << ' ' << penac[i] << '\n'; } }