#pragma GCC optimization ("O3") #include using namespace std; using ll = long long; using vec = vector; using mat = vector; using pll = pair; #define INF (1LL<<61) //#define MOD 1000000007LL #define MOD 998244353LL #define EPS (1e-10) #define PR(x) cout << (x) << endl #define PS(x) cout << (x) << " " #define REP(i,m,n) for(ll (i)=(m),(i_len)=(n);(i)<(i_len);++(i)) #define FORE(i,v) for(auto (i):v) #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((ll)(x).size()) #define REV(x) reverse(ALL((x))) #define ASC(x) sort(ALL((x))) #define DESC(x) {ASC((x)); REV((x));} #define BIT(s,i) (((s)>>(i))&1) #define pb push_back #define fi first #define se second template inline int chmin(T& a, T b) {if(a>b) {a=b; return 1;} return 0;} template inline int chmax(T& a, T b) {if(a=MOD) x-=MOD; return *this;} mint& operator-=(const mint& a) {if((x+=MOD-a.x)>=MOD) x-=MOD; return *this;} mint& operator*=(const mint& a) {(x*=a.x)%=MOD; return *this;} mint operator+(const mint& a) const {mint b(*this); return b+=a;} mint operator-(const mint& a) const {mint b(*this); return b-=a;} mint operator*(const mint& a) const {mint b(*this); return b*=a;} mint pow(ll t) const {if(!t) return 1; mint a=pow(t>>1); return (t&1?*this*a:a)*a;} mint inv() const {return pow(MOD-2);} mint& operator/=(const mint& a) {return *this*=a.inv();} mint operator/(const mint& a) const {mint b(*this); return b/=a;} }; istream &operator>>(istream& is, mint& a) {ll t; is>>t; a=t; return is;} ostream &operator<<(ostream& os, const mint& a) {return os< struct BinaryIndexedTree { int n; vector dat; BinaryIndexedTree(int n_) { n = n_+1; dat = vector(n, 0); } void add(int i, T x) { for(int idx=i; idx0; idx-=(idx&-idx)) s += dat[idx]; return s; } int lower_bound(T w) { if(w <= 0) return 0; else { int x = 0, r = 1; while(r < n) r <<= 1; for(int len=r; len>0; len>>=1) { if(x+len < n && dat[x+len] < w) { w -= dat[x+len]; x += len; } } return x+1; } } }; int main() { ll N, K; cin >> N >> K; ll M = 1000000; BinaryIndexedTree bit(M+1); REP(i,0,N) { ll w; cin >> w; if(w > 0) { if(bit.sum(M+1)-bit.sum(w-1) < K) bit.add(w, 1); } else { w = -w; if(bit.sum(w)-bit.sum(w-1) >= 1) bit.add(w, -1); } } PR(bit.sum(M+1)); return 0; } /* */