#include #ifdef _MSC_VER # include #else # include #endif #include #include namespace suisen { // ! utility template using constraints_t = std::enable_if_t, std::nullptr_t>; template constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward(then); } else { return std::forward(or_else); } } // ! function template using is_same_as_invoke_result = std::is_same, ReturnType>; template using is_uni_op = is_same_as_invoke_result; template using is_bin_op = is_same_as_invoke_result; template using is_comparator = std::is_same, bool>; // ! integral template >> constexpr int bit_num = std::numeric_limits>::digits; template struct is_nbit { static constexpr bool value = bit_num == n; }; template static constexpr bool is_nbit_v = is_nbit::value; // ? template struct safely_multipliable {}; template <> struct safely_multipliable { using type = long long; }; template <> struct safely_multipliable { using type = __int128_t; }; template <> struct safely_multipliable { using type = unsigned long long; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = __uint128_t; }; template <> struct safely_multipliable { using type = float; }; template <> struct safely_multipliable { using type = double; }; template <> struct safely_multipliable { using type = long double; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template using pq_greater = std::priority_queue, std::greater>; // ! macros (internal) #define DETAIL_OVERLOAD2(_1,_2,name,...) name #define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name #define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name #define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t>i=(l);i<(r);i+=(s)) #define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1) #define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n) #define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t>i=(l);;i+=(s)) #define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1) #define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0) #define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1) #define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n) #define DETAIL_CAT_I(a, b) a##b #define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b) #define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__) // ! macros #define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__) #define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__) #define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__) #define LOOP(n) for (std::remove_reference_t> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;) #define ALL(iterable) std::begin(iterable), std::end(iterable) #define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! debug #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward(first); ((std::cerr << ", " << std::forward(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template std::ostream& operator<<(std::ostream& out, const std::pair& a) { return out << a.first << ' ' << a.second; } // tuple template std::ostream& operator<<(std::ostream& out, const std::tuple& a) { if constexpr (N >= std::tuple_size_v>) return out; else { out << std::get(a); if constexpr (N + 1 < std::tuple_size_v>) out << ' '; return operator<<(out, a); } } // vector template std::ostream& operator<<(std::ostream& out, const std::vector& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template std::ostream& operator<<(std::ostream& out, const std::array& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t stoi128(const std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t stou128(const std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = stoi128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = stou128(s); return in; } // pair template std::istream& operator>>(std::istream& in, std::pair& a) { return in >> a.first >> a.second; } // tuple template std::istream& operator>>(std::istream& in, std::tuple& a) { if constexpr (N >= std::tuple_size_v>) return in; else return operator>>(in >> std::get(a), a); } // vector template std::istream& operator>>(std::istream& in, std::vector& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template std::istream& operator>>(std::istream& in, std::array& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1(bool n) { return -int(n) | 1; } // Returns floor(x / y) template constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template >, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template , std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template >, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num; } template , std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num; } template >, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num; } template , std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num; } template constexpr inline int floor_log2(const T x) { return suisen::bit_num - 1 - count_lz(x); } template constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template auto priqueue_comp(const Comparator comparator) { return std::priority_queue, Comparator>(comparator); } template void sort_unique_erase(Container& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template inline bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } // x <- max(x, y). returns true iff `x` has chenged. template inline bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template , std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num != -1) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template , std::nullptr_t> = nullptr> std::vector digits_low_to_high(T val, T base = 10) { std::vector res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template , std::nullptr_t> = nullptr> std::vector digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template std::string join(const std::vector& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } template auto transform_to_vector(const Func &f, const Seq &s) { std::vector> v; v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f); return v; } template auto copy_to_vector(const Seq &s) { std::vector v; v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v)); return v; } template Seq concat(Seq s, const Seq &t) { s.reserve(std::size(s) + std::size(t)); std::copy(std::begin(t), std::end(t), std::back_inserter(s)); return s; } template std::vector split(const Seq s, typename Seq::value_type delim) { std::vector res; for (auto itl = std::begin(s), itr = itl;; itl = ++itr) { while (itr != std::end(s) and *itr != delim) ++itr; res.emplace_back(itl, itr); if (itr == std::end(s)) return res; } } int digit_to_int(char c) { return c - '0'; } int lowercase_to_int(char c) { return c - 'a'; } int uppercase_to_int(char c) { return c - 'A'; } std::vector digit_str_to_ints(const std::string &s) { return transform_to_vector(digit_to_int, s); } std::vector lowercase_str_to_ints(const std::string &s) { return transform_to_vector(lowercase_to_int, s); } std::vector uppercase_str_to_ints(const std::string &s) { return transform_to_vector(uppercase_to_int, s); } const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include #include #include #include #include #include #include #include #include namespace suisen::internal::implicit_treap { template struct Node { using random_engine = std::mt19937; static inline random_engine rng{ std::random_device{}() }; using priority_type = std::invoke_result_t; static priority_type random_priority() { return rng(); } using node_type = Derived; using node_pointer = uint32_t; using size_type = uint32_t; using difference_type = int32_t; using value_type = T; using pointer = value_type*; using const_pointer = const value_type*; using reference = value_type&; using const_reference = const value_type&; static inline std::vector _nodes{}; static inline std::vector _erased{}; static constexpr node_pointer null = ~node_pointer(0); node_pointer _ch[2]{ null, null }; value_type _val; size_type _size; priority_type _priority; node_pointer _prev = null, _next = null; Node(const value_type val = {}): _val(val), _size(1), _priority(random_priority()) {} static void reserve(size_type capacity) { _nodes.reserve(capacity); } static bool is_null(node_pointer t) { return t == null; } static bool is_not_null(node_pointer t) { return not is_null(t); } static node_type& node(node_pointer t) { return _nodes[t]; } static const node_type& const_node(node_pointer t) { return _nodes[t]; } static value_type& value(node_pointer t) { return node(t)._val; } static value_type set_value(node_pointer t, const value_type& new_val) { return std::exchange(value(t), new_val); } static bool empty(node_pointer t) { return is_null(t); } static size_type& size(node_pointer t) { return node(t)._size; } static size_type safe_size(node_pointer t) { return empty(t) ? 0 : size(t); } static priority_type& priority(node_pointer t) { return node(t)._priority; } static void set_priority(node_pointer t, priority_type new_priority) { priority(t) = new_priority; } static node_pointer& prev(node_pointer t) { return node(t)._prev; } static node_pointer& next(node_pointer t) { return node(t)._next; } static void link(node_pointer l, node_pointer r) { next(l) = r, prev(r) = l; } static node_pointer min(node_pointer t) { while (true) { node_pointer nt = child0(t); if (is_null(nt)) return t; t = nt; } } static node_pointer max(node_pointer t) { while (true) { node_pointer nt = child1(t); if (is_null(nt)) return t; t = nt; } } static node_pointer& child0(node_pointer t) { return node(t)._ch[0]; } static node_pointer& child1(node_pointer t) { return node(t)._ch[1]; } static node_pointer& child(node_pointer t, bool b) { return node(t)._ch[b]; } static node_pointer set_child0(node_pointer t, node_pointer cid) { return std::exchange(child0(t), cid); } static node_pointer set_child1(node_pointer t, node_pointer cid) { return std::exchange(child1(t), cid); } static node_pointer set_child(node_pointer t, bool b, node_pointer cid) { return std::exchange(child(t, b), cid); } static node_pointer update(node_pointer t) { // t : not null size(t) = safe_size(child0(t)) + safe_size(child1(t)) + 1; return t; } static node_pointer empty_node() { return null; } template static node_pointer create_node(Args &&...args) { if (_erased.size()) { node_pointer res = _erased.back(); _erased.pop_back(); node(res) = node_type(std::forward(args)...); return res; } else { node_pointer res = _nodes.size(); _nodes.emplace_back(std::forward(args)...); return res; } } static void delete_node(node_pointer t) { _erased.push_back(t); } static void delete_tree(node_pointer t) { if (is_null(t)) return; delete_tree(child0(t)); delete_tree(child1(t)); delete_node(t); } template static node_pointer build(Args &&... args) { std::vector dat(std::forward(args)...); const size_t n = dat.size(); std::vector priorities(n); std::generate(priorities.begin(), priorities.end(), random_priority); std::make_heap(priorities.begin(), priorities.end()); std::vector nodes(n); auto rec = [&](auto rec, size_t heap_index, size_t dat_index_offset) -> std::pair { if (heap_index >= n) return { 0, null }; auto [lsiz, lch] = rec(rec, 2 * heap_index + 1, dat_index_offset); dat_index_offset += lsiz; node_pointer root = create_node(std::move(dat[dat_index_offset])); nodes[dat_index_offset] = root; set_priority(root, priorities[heap_index]); if (dat_index_offset) { link(nodes[dat_index_offset - 1], root); } dat_index_offset += 1; auto [rsiz, rch] = rec(rec, 2 * heap_index + 2, dat_index_offset); set_child0(root, lch); set_child1(root, rch); return { lsiz + 1 + rsiz, node_type::update(root) }; }; return rec(rec, 0, 0).second; } static std::pair split(node_pointer t, size_type k) { if (k == 0) return { null, t }; if (k == size(t)) return { t, null }; static std::vector lp{}, rp{}; while (true) { if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { if (rp.size()) set_child0(rp.back(), t); rp.push_back(t); if (k == lsiz) { if (lp.size()) set_child1(lp.back(), child0(t)); node_pointer lt = set_child0(t, null), rt = null; while (lp.size()) node_type::update(lt = lp.back()), lp.pop_back(); while (rp.size()) node_type::update(rt = rp.back()), rp.pop_back(); return { lt, rt }; } t = child0(t); } else { if (lp.size()) set_child1(lp.back(), t); lp.push_back(t); t = child1(t); k -= lsiz + 1; } } } static std::tuple split(node_pointer t, size_type l, size_type r) { auto [tlm, tr] = split(t, r); auto [tl, tm] = split(tlm, l); return { tl, tm, tr }; } static node_pointer merge_impl(node_pointer tl, node_pointer tr) { if (priority(tl) < priority(tr)) { if (node_pointer tm = child0(tr); is_null(tm)) { link(max(tl), tr); set_child0(tr, tl); } else { set_child0(tr, merge(tl, tm)); } return node_type::update(tr); } else { if (node_pointer tm = child1(tl); is_null(tm)) { link(tl, min(tr)); set_child1(tl, tr); } else { set_child1(tl, merge(tm, tr)); } return node_type::update(tl); } } static node_pointer merge(node_pointer tl, node_pointer tr) { if (is_null(tl)) return tr; if (is_null(tr)) return tl; return merge_impl(tl, tr); } static node_pointer merge(node_pointer tl, node_pointer tm, node_pointer tr) { return merge(merge(tl, tm), tr); } static node_pointer insert_impl(node_pointer t, size_type k, node_pointer new_node) { if (is_null(t)) return new_node; static std::vector st; bool b = false; while (true) { if (is_null(t) or priority(new_node) > priority(t)) { if (is_null(t)) { t = new_node; } else { auto [tl, tr] = split(t, k); if (is_not_null(tl)) link(max(tl), new_node); if (is_not_null(tr)) link(new_node, min(tr)); set_child0(new_node, tl); set_child1(new_node, tr); t = node_type::update(new_node); } if (st.size()) { set_child(st.back(), b, t); do t = node_type::update(st.back()), st.pop_back(); while (st.size()); } return t; } else { if (const size_type lsiz = safe_size(child0(t)); k <= lsiz) { if (k == lsiz) link(new_node, t); st.push_back(t), b = false; t = child0(t); } else { if (k == lsiz + 1) link(t, new_node); st.push_back(t), b = true; t = child1(t); k -= lsiz + 1; } } } } template static node_pointer insert(node_pointer t, size_type k, Args &&...args) { return insert_impl(t, k, create_node(std::forward(args)...)); } static std::pair erase(node_pointer t, size_type k) { if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { delete_node(t); return { merge(child0(t), child1(t)), std::move(value(t)) }; } else if (k < lsiz) { auto [c0, v] = erase(child0(t), k); set_child0(t, c0); if (is_not_null(c0) and k == lsiz - 1) link(max(c0), t); return { node_type::update(t), std::move(v) }; } else { auto [c1, v] = erase(child1(t), k - (lsiz + 1)); set_child1(t, c1); if (is_not_null(c1) and k == lsiz + 1) link(t, min(c1)); return { node_type::update(t), std::move(v) }; } } static node_pointer rotate(node_pointer t, size_type k) { auto [tl, tr] = split(t, k); return merge(tr, tl); } static node_pointer rotate(node_pointer t, size_type l, size_type m, size_type r) { auto [tl, tm, tr] = split(t, l, r); return merge(tl, rotate(tm, m - l), tr); } template static node_pointer set_update(node_pointer t, size_type k, const Func& f) { if (const size_type lsiz = safe_size(child0(t)); k == lsiz) { value_type& val = value(t); val = f(const_cast(val)); } else if (k < lsiz) { set_child0(t, set_update(child0(t), k, f)); } else { set_child1(t, set_update(child1(t), k - (lsiz + 1), f)); } return node_type::update(t); } static std::vector dump(node_pointer t) { std::vector res; res.reserve(safe_size(t)); auto rec = [&](auto rec, node_pointer t) -> void { if (is_null(t)) return; rec(rec, child0(t)); res.push_back(value(t)); rec(rec, child1(t)); }; rec(rec, t); return res; } template struct NodeIterator { static constexpr bool constant = constant_; static constexpr bool reversed = reversed_; friend Node; friend Derived; using difference_type = Node::difference_type; using value_type = Node::value_type; using pointer = std::conditional_t; using reference = std::conditional_t; using iterator_category = std::random_access_iterator_tag; NodeIterator(): NodeIterator(null) {} explicit NodeIterator(node_pointer root): NodeIterator(root, 0, null) {} NodeIterator(const NodeIterator& it): NodeIterator(it._root, it._index, it._cur) {} reference operator*() const { if (is_null(_cur) and _index != safe_size(_root)) { _cur = _root; for (size_type k = _index;;) { if (size_type siz = safe_size(child(_cur, reversed)); k == siz) { break; } else if (k < siz) { _cur = child(_cur, reversed); } else { _cur = child(_cur, not reversed); k -= siz + 1; } } } return value(_cur); } reference operator[](difference_type k) const { return *((*this) + k); } NodeIterator& operator++() { return *this += 1; } NodeIterator& operator--() { return *this -= 1; } NodeIterator& operator+=(difference_type k) { return suc(+k), * this; } NodeIterator& operator-=(difference_type k) { return suc(-k), * this; } NodeIterator operator++(int) { NodeIterator res = *this; ++(*this); return res; } NodeIterator operator--(int) { NodeIterator res = *this; --(*this); return res; } friend NodeIterator operator+(NodeIterator it, difference_type k) { return it += k; } friend NodeIterator operator+(difference_type k, NodeIterator it) { return it += k; } friend NodeIterator operator-(NodeIterator it, difference_type k) { return it -= k; } friend difference_type operator-(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index - rhs._index; } friend bool operator==(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index == rhs._index; } friend bool operator!=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index != rhs._index; } friend bool operator<(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index < rhs._index; } friend bool operator>(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index > rhs._index; } friend bool operator<=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index <= rhs._index; } friend bool operator>=(const NodeIterator& lhs, const NodeIterator& rhs) { return lhs._index >= rhs._index; } static NodeIterator begin(node_pointer root) { return NodeIterator(root, 0, null); } static NodeIterator end(node_pointer root) { return NodeIterator(root, safe_size(root), null); } int size() const { return safe_size(_root); } int index() const { return _index; } private: node_pointer _root; size_type _index; mutable node_pointer _cur; // it==end() or uninitialized (updates only index) NodeIterator(node_pointer root, size_type index, node_pointer cur): _root(root), _index(index), _cur(cur) {} void suc(difference_type k) { _index += k; if (_index == safe_size(_root) or std::abs(k) >= 20) _cur = null; if (is_null(_cur)) return; const bool positive = k < 0 ? (k = -k, reversed) : not reversed; if (positive) { while (k-- > 0) _cur = next(_cur); } else { while (k-- > 0) _cur = prev(_cur); } } node_pointer root() const { return _root; } void set_root(node_pointer new_root, size_type new_index) { _root = new_root, _index = new_index; } node_pointer get_child0() const { return child0(_cur); } node_pointer get_child1() const { return child1(_cur); } template static NodeIterator binary_search(node_pointer t, const Predicate& f) { NodeIterator res(t, safe_size(t), null); if (is_null(t)) return res; NodeIterator it(t, safe_size(child0(t)), t); while (is_not_null(it._cur)) { if (f(it)) { res = it; it._cur = it.get_child0(); it._index -= is_null(it._cur) ? 1 : safe_size(it.get_child1()) + 1; } else { it._cur = it.get_child1(); it._index += is_null(it._cur) ? 1 : safe_size(it.get_child0()) + 1; } } return res; } size_type get_gap_index_left() const { if constexpr (reversed) return size() - index(); else return index(); } size_type get_element_index_left() const { if constexpr (reversed) return size() - index() - 1; else return index(); } }; using iterator = NodeIterator; using reverse_iterator = NodeIterator; using const_iterator = NodeIterator; using const_reverse_iterator = NodeIterator; template struct is_node_iterator: std::false_type {}; template struct is_node_iterator>: std::true_type {}; template static constexpr bool is_node_iterator_v = is_node_iterator::value; static iterator begin(node_pointer t) { return iterator::begin(t); } static iterator end(node_pointer t) { return iterator::end(t); } static reverse_iterator rbegin(node_pointer t) { return reverse_iterator::begin(t); } static reverse_iterator rend(node_pointer t) { return reverse_iterator::end(t); } static const_iterator cbegin(node_pointer t) { return const_iterator::begin(t); } static const_iterator cend(node_pointer t) { return const_iterator::end(t); } static const_reverse_iterator crbegin(node_pointer t) { return const_reverse_iterator::begin(t); } static const_reverse_iterator crend(node_pointer t) { return const_reverse_iterator::end(t); } // Find the first element that satisfies the condition f : iterator -> { false, true }. // Returns const_iterator template , std::nullptr_t> = nullptr> static Iterator binary_search(node_pointer t, const Predicate& f) { return Iterator::binary_search(t, f); } // comp(T t, U u) = (t < u) template , std::enable_if_t, std::nullptr_t> = nullptr> static Iterator lower_bound(node_pointer t, const U& target, Compare comp) { return binary_search(t, [&](Iterator it) { return not comp(*it, target); }); } // comp(T u, U t) = (u < t) template , std::enable_if_t, std::nullptr_t> = nullptr> static Iterator upper_bound(node_pointer t, const U& target, Compare comp) { return binary_search(t, [&](Iterator it) { return comp(target, *it); }); } template , std::nullptr_t> = nullptr> static node_pointer insert(Iterator it, const value_type& val) { return insert(it.root(), it.get_gap_index_left(), val); } template , std::nullptr_t> = nullptr> static std::pair erase(Iterator it) { return erase(it.root(), it.get_element_index_left()); } template , std::nullptr_t> = nullptr> static std::pair split(Iterator it) { return split(it.root(), it.get_gap_index_left()); } }; } // namespace suisen::internal::implicit_treap namespace suisen { namespace internal::implicit_treap { template struct DefaultNode: Node> { using base = Node>; using base::base; }; } template class DynamicArray { using node_type = internal::implicit_treap::DefaultNode; using node_pointer = typename node_type::node_pointer; node_pointer _root; struct node_pointer_construct {}; DynamicArray(node_pointer root, node_pointer_construct): _root(root) {} public: using value_type = typename node_type::value_type; DynamicArray(): _root(node_type::empty_node()) {} explicit DynamicArray(size_t n, const value_type& fill_value = {}): _root(node_type::build(n, fill_value)) {} template DynamicArray(const std::vector& dat) : _root(node_type::build(dat.begin(), dat.end())) {} void free() { node_type::delete_tree(_root); _root = node_type::empty_node(); } void clear() { free(); } static void reserve(size_t capacity) { node_type::reserve(capacity); } bool empty() const { return node_type::empty(_root); } int size() const { return node_type::safe_size(_root); } value_type& operator[](size_t k) { assert(k < size_t(size())); return begin()[k]; } const value_type& operator[](size_t k) const { assert(k < size_t(size())); return cbegin()[k]; } value_type& front() { return *begin(); } value_type& back() { return *rbegin(); } const value_type& front() const { return *cbegin(); } const value_type& back() const { return *crbegin(); } void insert(size_t k, const value_type& val) { assert(k <= size_t(size())); _root = node_type::insert(_root, k, val); } void push_front(const value_type& val) { insert(0, val); } void push_back(const value_type& val) { insert(size(), val); } value_type erase(size_t k) { assert(k <= size_t(size())); value_type v; std::tie(_root, v) = node_type::erase(_root, k); return v; } value_type pop_front() { return erase(0); } value_type pop_back() { return erase(size() - 1); } // Split immediately before the k-th element. DynamicArray split(size_t k) { assert(k <= size_t(size())); node_pointer root_r; std::tie(_root, root_r) = node_type::split(_root, k); return DynamicArray(root_r, node_pointer_construct{}); } void merge(DynamicArray r) { _root = node_type::merge(_root, r._root); } void rotate(size_t k) { assert(k <= size_t(size())); _root = node_type::rotate(_root, k); } void rotate(size_t l, size_t m, size_t r) { assert(l <= m and m <= r and r <= size_t(size())); _root = node_type::rotate(_root, l, m, r); } std::vector dump() const { return node_type::dump(_root); } using iterator = typename node_type::iterator; using reverse_iterator = typename node_type::reverse_iterator; using const_iterator = typename node_type::const_iterator; using const_reverse_iterator = typename node_type::const_reverse_iterator; iterator begin() { return node_type::begin(_root); } iterator end() { return node_type::end(_root); } reverse_iterator rbegin() { return node_type::rbegin(_root); } reverse_iterator rend() { return node_type::rend(_root); } const_iterator begin() const { return cbegin(); } const_iterator end() const { return cend(); } const_reverse_iterator rbegin() const { return crbegin(); } const_reverse_iterator rend() const { return crend(); } const_iterator cbegin() const { return node_type::cbegin(_root); } const_iterator cend() const { return node_type::cend(_root); } const_reverse_iterator crbegin() const { return node_type::crbegin(_root); } const_reverse_iterator crend() const { return node_type::crend(_root); } // Find the first element that satisfies the condition f. // Returns { position, optional(value) } // Requirements: f(A[i]) must be monotonic template iterator binary_search(const Predicate& f) { return node_type::template binary_search(_root, f); } // comp(T t, U u) = (t < u) // Requirements: sequence is sorted template > iterator lower_bound(const U& target, Compare comp = {}) { return node_type::template lower_bound(_root, target, comp); } // comp(T u, U t) = (u < t) // Requirements: sequence is sorted template > iterator upper_bound(const U& target, Compare comp = {}) { return node_type::template upper_bound(_root, target, comp); } // Find the first element that satisfies the condition f. // Returns { position, optional(value) } // Requirements: f(A[i]) must be monotonic template const_iterator binary_search(const Predicate& f) const { return node_type::template binary_search(_root, f); } // comp(T t, U u) = (t < u) // Requirements: sequence is sorted template > const_iterator lower_bound(const U& target, Compare comp = {}) const { return node_type::template lower_bound(_root, target, comp); } // comp(T u, U t) = (u < t) // Requirements: sequence is sorted template > const_iterator upper_bound(const U& target, Compare comp = {}) const { return node_type::template upper_bound(_root, target, comp); } template , std::nullptr_t> = nullptr> void insert(Iterator it, const value_type &val) { _root = node_type::insert(it, val); } template , std::nullptr_t> = nullptr> value_type erase(Iterator it) { value_type erased; std::tie(_root, erased) = node_type::erase(it); return erased; } template , std::nullptr_t> = nullptr> DynamicArray split(Iterator it) { node_pointer root_r; std::tie(_root, root_r) = node_type::split(it); return DynamicArray(root_r, node_pointer_construct{}); } // handling internal nodes using internal_node = node_type; using internal_node_pointer = node_pointer; internal_node_pointer& root_node() { return _root; } const internal_node_pointer& root_node() const { return _root; } void set_root_node(internal_node_pointer new_root) { root_node() = new_root; } }; } // namespace suisen bool ops[4][2][2] { { { 0, 0 }, { 0, 1 } }, { { 0, 1 }, { 1, 1 }, }, { { 0, 1 }, { 1, 0 } }, { { 1, 1 }, { 0, 1 } } }; array op; void solve() { op['a'] = 0; op['o'] = 1; op['x'] = 2; op['i'] = 3; int n; read(n); vector init_a(n); vector init_y(n - 1); REP(i, n) { string s; read(s); init_a[i] = s == "True"; } REP(i, n - 1) { string s; read(s); init_y[i] = op[s.front()]; } DynamicArray a(init_a); DynamicArray y(init_y); LOOP(n - 1) { // debug(a.dump()); // debug(y.dump()); int pos; read(pos); --pos; a[pos] = ops[y[pos]][a[pos]][a[pos + 1]]; y.erase(pos); a.erase(pos + 1); } print(a.front() ? "True" : "False"); } int main() { int t; read(t); LOOP(t) { solve(); } return 0; }