#include using namespace std; using ll = long long; using ld = long double; using pll = pair; using tlll = tuple; constexpr ll INF = 1LL << 60; template bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;} template bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;} ll safemod(ll A, ll M) {ll res = A % M; if (res < 0) res += M; return res;} ll divfloor(ll A, ll B) {if (B < 0) A = -A, B = -B; return (A - safemod(A, B)) / B;} ll divceil(ll A, ll B) {if (B < 0) A = -A, B = -B; return divfloor(A + B - 1, B);} ll pow_ll(ll A, ll B) {if (A == 0 || A == 1) {return A;} if (A == -1) {return B & 1 ? -1 : 1;} ll res = 1; for (int i = 0; i < B; i++) {res *= A;} return res;} ll mul_limited(ll A, ll B, ll M = INF) { return B == 0 ? 0 : A > M / B ? M : A * B; } ll pow_limited(ll A, ll B, ll M = INF) { if (A == 0 || A == 1) {return A;} ll res = 1; for (int i = 0; i < B; i++) {if (res > M / A) return M; res *= A;} return res;} ll logfloor(ll A, ll B) {assert(A >= 2); ll res = 0; for (ll tmp = 1; tmp <= B / A; tmp *= A) {res++;} return res;} ll logceil(ll A, ll B) {assert(A >= 2); ll res = 0; for (ll tmp = 1; tmp < B; tmp *= A) {res++;} return res;} ll arisum_ll(ll a, ll d, ll n) { return n * a + (n & 1 ? ((n - 1) >> 1) * n : (n >> 1) * (n - 1)) * d; } ll arisum2_ll(ll a, ll l, ll n) { return n & 1 ? ((a + l) >> 1) * n : (n >> 1) * (a + l); } ll arisum3_ll(ll a, ll l, ll d) { assert((l - a) % d == 0); return arisum2_ll(a, l, (l - a) / d + 1); } template void unique(vector &V) {V.erase(unique(V.begin(), V.end()), V.end());} template void sortunique(vector &V) {sort(V.begin(), V.end()); V.erase(unique(V.begin(), V.end()), V.end());} #define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false) template void printvec(const vector &V) {int _n = V.size(); for (int i = 0; i < _n; i++) cout << V[i] << (i == _n - 1 ? "" : " ");cout << '\n';} template void printvect(const vector &V) {for (auto v : V) cout << v << '\n';} template void printvec2(const vector> &V) {for (auto &v : V) printvec(v);} //* #include #include #include #include using namespace atcoder; //*/ template vector convolution_anymod(const vector &A, const vector &B) { int N = A.size(), M = B.size(); if (min(N, M) <= 300) { using mint = static_modint; vector A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i]; for (int j = 0; j < M; j++) B2[j] = B[j]; vector C2(N + M - 1, 0); for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) C2[i + j] += A2[i] * B2[j]; vector C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = C2[i].val(); return C; } constexpr ll MOD1 = 167772161, MOD2 = 469762049, MOD3 = 1224736769; using mint2 = static_modint; using mint3 = static_modint; using mint4 = static_modint; constexpr int i1_2 = internal::inv_gcd(MOD1, MOD2).second; constexpr int i12_3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; constexpr int m12_4 = MOD1 * MOD2 % MOD; auto C1 = convolution(A, B); auto C2 = convolution(A, B); auto C3 = convolution(A, B); vector C(N + M - 1); for (ll i = 0; i < N + M - 1; i++) { int c1 = C1[i], c2 = C2[i], c3 = C3[i]; int t1 = (mint2(c2 - c1) * mint2::raw(i1_2)).val(); mint3 x2_m3 = mint3::raw(c1) + mint3::raw(t1) * mint3::raw(MOD1); mint4 x2_m = mint4::raw(c1) + mint4::raw(t1) * mint4::raw(MOD1); int t2 = ((mint3::raw(c3) - x2_m3) * mint3::raw(i12_3)).val(); C[i] = (x2_m + mint4::raw(t2) * mint4::raw(m12_4)).val(); } return C; } template vector convolution_anymod(const vector &A, const vector &B, const int MOD) { int N = A.size(), M = B.size(); if (min(N, M) <= 300) { using mint = dynamic_modint<100>; mint::set_mod(MOD); vector A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i]; for (int j = 0; j < M; j++) B2[j] = B[j]; vector C2(N + M - 1, 0); for (int i = 0; i < N; i++) for (int j = 0; j < M; j++) C2[i + j] += A2[i] * B2[j]; vector C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = C2[i].val(); return C; } constexpr ll MOD1 = 167772161, MOD2 = 469762049, MOD3 = 1224736769; using mint2 = static_modint; using mint3 = static_modint; using mint4 = dynamic_modint<100>; mint4::set_mod(MOD); constexpr int i1_2 = internal::inv_gcd(MOD1, MOD2).second; constexpr int i12_3 = internal::inv_gcd(MOD1 * MOD2, MOD3).second; auto C1 = convolution(A, B); auto C2 = convolution(A, B); auto C3 = convolution(A, B); vector C(N + M - 1); for (ll i = 0; i < N + M - 1; i++) { int c1 = C1[i], c2 = C2[i], c3 = C3[i]; int t1 = (mint2(c2 - c1) * mint2::raw(i1_2)).val(); mint3 x2_m3 = mint3::raw(c1) + mint3::raw(t1) * mint3::raw(MOD1); mint4 x2_m = mint4::raw(c1) + mint4::raw(t1) * mint4::raw(MOD1); int t2 = ((mint3::raw(c3) - x2_m3) * mint3::raw(i12_3)).val(); C[i] = (x2_m + mint4::raw(t2) * mint4::raw(MOD1) * mint4::raw(MOD2)).val(); } return C; } template vector> convolution_anymod(const vector> &A, const vector> &B) { int N = A.size(), M = B.size(); vector A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i].val(); for (int i = 0; i < M; i++) B2[i] = B[i].val(); vector C2 = convolution_anymod(A2, B2); vector> C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = static_modint::raw(C2[i]); return C; } template vector> convolution_anymod(const vector> &A, const vector> &B) { int N = A.size(), M = B.size(); vector A2(N), B2(M); for (int i = 0; i < N; i++) A2[i] = A[i].val(); for (int i = 0; i < M; i++) B2[i] = B[i].val(); vector C2 = convolution_anymod(A2, B2, dynamic_modint::mod()); vector> C(N + M - 1); for (int i = 0; i < N + M - 1; i++) C[i] = dynamic_modint::raw(C2[i]); return C; } // https://opt-cp.com/fps-implementation/ // https://qiita.com/hotman78/items/f0e6d2265badd84d429a // https://opt-cp.com/fps-fast-algorithms/ // https://maspypy.com/%E5%A4%9A%E9%A0%85%E5%BC%8F%E3%83%BB%E5%BD%A2%E5%BC%8F%E7%9A%84%E3%81%B9%E3%81%8D%E7%B4%9A%E6%95%B0-%E9%AB%98%E9%80%9F%E3%81%AB%E8%A8%88%E7%AE%97%E3%81%A7%E3%81%8D%E3%82%8B%E3%82%82%E3%81%AE template struct FormalPowerSeries : vector { using vector::vector; using vector::operator=; using F = FormalPowerSeries; using S = vector>; FormalPowerSeries(const S &f, int n = -1) { if (n == -1) n = f.back().first + 1; (*this).assign(n, T(0)); for (auto [d, a] : f) (*this)[d] += a; } F operator-() const { F res(*this); for (auto &a : res) a = -a; return res; } F operator*=(const T &k) { for (auto &a : *this) a *= k; return *this; } F operator*(const T &k) const { return F(*this) *= k; } friend F operator*(const T k, const F &f) { return f * k; } F operator/=(const T &k) { *this *= k.inv(); return *this; } F operator/(const T &k) const { return F(*this) /= k; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); (*this).resize(max(n, m), T(0)); for (int i = 0; i < m; i++) (*this)[i] += g[i]; return *this; } F operator+(const F &g) const { return F(*this) += g; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); (*this).resize(max(n, m), T(0)); for (int i = 0; i < m; i++) (*this)[i] -= g[i]; return *this; } F operator-(const F &g) const { return F(*this) -= g; } F &operator<<=(const ll d) { int n = (*this).size(); (*this).insert((*this).begin(), min(ll(n), d), T(0)); (*this).resize(n); return *this; } F operator<<(const ll d) const { return F(*this) <<= d; } F &operator>>=(const ll d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(ll(n), d)); (*this).resize(n, T(0)); return *this; } F operator>>(const ll d) const { return F(*this) >>= d; } F &operator*=(const S &g) { int n = (*this).size(); auto [d, c] = g.front(); if (d != 0) c = 0; for (int i = n - 1; i >= 0; i--) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j == 0) continue; if (j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } F operator*(const S &g) const { return F(*this) *= g; } F &operator/=(const S &g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T inv_c = c.inv(); for (int i = 0; i < n; i++) { for (auto &[j, b] : g) { if (j == 0) continue; if (j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= inv_c; } return *this; } F operator/(const S &g) const { return F(*this) /= g; } // (1 + cx^d) を掛ける F multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) { for (int i = n - 1 - d; i >= 0; i--) (*this)[i + d] += (*this)[i]; } else if (c == T(-1)) { for (int i = n - 1 - d; i >= 0; i--) (*this)[i + d] -= (*this)[i]; } else { for (int i = n - 1 - d; i >= 0; i--) (*this)[i + d] += (*this)[i] * c; } return *this; } F multiplication(const int d, const T c) const { return multiply(F(*this)); } // (1 + cx^d) で割る F divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) { for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i]; } else if (c == T(-1)) { for (int i = 0; i < n - d; i++) (*this)[i + d] += (*this)[i]; } else { for (int i = 0; i < n - d; i++) (*this)[i + d] -= (*this)[i] * c; } return *this; } F division(const int d, const T c) const { return divide(F(*this)); } template F convolution2(const vector> &A, const vector> &B, const int d = -1) const { F res; if (is_ntt_friendly) res = convolution(A, B); else res = convolution_anymod(A, B); if (d != -1 && (int)res.size() > d) res.resize(d); return res; } template F convolution2(const vector> &A, const vector> &B, const int d = -1) const { F res; res = convolution_anymod(A, B); if (d != -1 && (int)res.size() > d) res.resize(d); return res; } F &operator*=(const F &g) { int n = (*this).size(); if (n == 0) return *this; *this = convolution2(*this, g, n); return *this; } F operator*(const F &g) const { return F(*this) *= g; } template void butterfly2(FormalPowerSeries, true> &A) const { internal::butterfly(A); } template void butterfly2(FormalPowerSeries, false> &A) const { assert(false); } template void butterfly2(FormalPowerSeries, false> &A) const { assert(false); } template void butterfly_inv2(FormalPowerSeries, true> &A) const { internal::butterfly_inv(A); } template void butterfly_inv2(FormalPowerSeries, false> &A) const { assert(false); } template void butterfly_inv2(FormalPowerSeries, false> &A) const { assert(false); } // mod (x^n - 1) をとったものを返す F circular_mod(int n) const { F res(n, T(0)); for (int i = 0; i < (*this).size(); i++) res[i % n] += (*this)[i]; return res; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this).front() != 0); if (d == -1) d = n; assert(d > 0); F f, g2; F g{(*this).front().inv()}; while ((int)g.size() < d) { if (is_ntt_friendly) { int m = g.size(); f = F{(*this).begin(), (*this).begin() + min(n, 2 * m)}; g2 = F(g); f.resize(2 * m, T(0)), butterfly2(f); g2.resize(2 * m, T(0)), butterfly2(g2); for (int i = 0; i < 2 * m; i++) f[i] *= g2[i]; butterfly_inv2(f); f.erase(f.begin(), f.begin() + m); f.resize(2 * m, T(0)), butterfly2(f); for (int i = 0; i < 2 * m; i++) f[i] *= g2[i]; butterfly_inv2(f); T iz = T(2 * m).inv(); iz *= -iz; for (int i = 0; i < m; i++) f[i] *= iz; g.insert(g.end(), f.begin(), f.begin() + m); } else { g.resize(2 * g.size(), T(0)); g *= F{T(2)} - g * (*this); } } return {g.begin(), g.begin() + d}; } F &operator/=(const F &g) { *this *= g.inv((*this).size()); return *this; } F operator/(const F &g) const { return F(*this) *= g.inv((*this).size()); } F differentiate() { *this >>= 1; for (int i = 0; i < int((*this).size()) - 1; i++) (*this)[i] *= i + 1; return *this; } F differential() const { return F(*this).differentiate(); } F integrate() { int n = (*this).size(); vector minv(n); minv[1] = T(1); *this <<= 1; for (int i = 2; i < n; i++) { minv[i] = -minv[T::mod() % i] * (T::mod() / i); (*this)[i] *= minv[i]; } return *this; } F integral() const { return F(*this).integrate(); } F log() const { assert((*this).front() == T(1)); return ((*this).differential() / (*this)).integral(); } F exp() const // https://arxiv.org/pdf/1301.5804.pdf { int n = (*this).size(); assert(n != 0 && (*this).front() == T(0)); //* if (is_ntt_friendly) { F f{T(1)}, g{T(1)}; F dh = (*this).differential(); F f2, g2, f3, q, s, h, u; g2 = {T(0)}; while ((int)f.size() < n) { int m = f.size(); T im = T(m).inv(), i2m = T(2 * m).inv(); f2 = F(f); f2.resize(2 * m), butterfly2(f2); // a F f3(f); butterfly2(f3); for (int i = 0; i < m; i++) f3[i] *= g2[i]; butterfly_inv2(f3); f3.erase(f3.begin(), f3.begin() + m / 2); f3.resize(m, T(0)), butterfly2(f3); for (int i = 0; i < m; i++) f3[i] *= g2[i]; butterfly_inv2(f3); for (int i = 0; i < m / 2; i++) f3[i] *= -im * im; g.insert(g.end(), f3.begin(), f3.begin() + m / 2); g2 = F(g), g2.resize(2 * m), butterfly2(g2); // b, c q = F(dh); q.resize(2 * m); for (int i = m - 1; i < 2 * m; i++) q[i] = T(0); butterfly2(q); for (int i = 0; i < 2 * m; i++) q[i] *= f2[i]; butterfly_inv2(q); q = q.circular_mod(m); for (int i = 0; i < m; i++) q[i] *= i2m; // d, e q.resize(m + 1); s = ((f.differential() - q) << 1).circular_mod(m); s.resize(2 * m); butterfly2(s); for (int i = 0; i < 2 * m; i++) s[i] *= g2[i]; butterfly_inv2(s); for (int i = 0; i < m; i++) s[i] *= i2m; s.resize(m); // f, g h = (*this); h.resize(2 * m), s.resize(2 * m); u = (h - (s << (m - 1)).integral()) >> m; butterfly2(u); for (int i = 0; i < 2 * m; i++) u[i] *= f2[i]; butterfly_inv2(u); for (int i = 0; i < m; i++) u[i] *= i2m; u.resize(m); // h f.insert(f.end(), u.begin(), u.end()); } return {f.begin(), f.begin() + n}; } else //*/ { F f{T(1)}, g{T(1)}; while ((int)f.size() < n) { int m = f.size(); g = convolution2(g, F{T(2)} - f * g, m); F q = (*this).differential(); q.resize(m - 1); F r = f.convolution2(f, q).circular_mod(m); r.resize(m + 1); F s = ((f.differential() - r) << 1).circular_mod(m); F t = g * s; F h = (*this); h.resize(2 * m), t.resize(2 * m); F u = (h - (t << (m - 1)).integral()) >> m; F v = f * u; f.insert(f.end(), v.begin(), v.end()); } return {f.begin(), f.begin() + n}; /* F f{T(1)}; while ((int)f.size() < n) { int m = f.size(); f.resize(min(n, 2 * m), T(0)); f *= (*this) + F{T(1)} - f.log(); } return f; //*/ } } F pow(const ll k) const { if (k == 0) { F res((*this).size(), T(0)); res[0] = T(1); return res; } int n = (*this).size(), d; for (d = 0; d < n; d++) { if ((*this)[d] != T(0)) break; } if (d == n) return F(n, 0); F res = F(*this) >> d; T c = res[0]; res /= c; res = (res.log() * T(k)).exp(); res *= c.pow(k), res <<= (d != 0 && k > n ? n : d * k); return res; } F powmod(ll k, const F &g) const { F res(2 * g.size(), 0); res.front() = 1; F tmp = (*this) % g; tmp.resize(g.size()); while (k > 0) { if (k & 1) { res *= tmp; res %= g; res.resize(2 * g.size()); } tmp = tmp.convolution2(tmp, tmp); tmp %= g; tmp.resize(g.size()); k >>= 1; } return res; } // 素数 mod を要求 // 存在しないなら空配列を返す F sqrt() const { int n = (*this).size(), d; for (d = 0; d < n; d += 2) { if ((*this)[d] != 0) break; if (d + 1 < n && (*this)[d + 1] != 0) return F(0); } if (d >= n) return F(n, 0); T a = (*this)[d]; int p = T::mod(); if (a.pow((p - 1) / 2) == p - 1) return F(0); T r; if (p % 4 == 3) r = a.pow((p + 1) / 4); else { int q = p - 1, s = 0; while (q % 2 == 0) q /= 2, s++; T z = 2; while (z.pow((p - 1) / 2) != p - 1) z++; int m = s; T c = z.pow(q); T t = a.pow(q); r = a.pow((q + 1) / 2); while (t != 1) { int m2 = 1; for (T tmp = t * t; tmp != 1; tmp = tmp * tmp, m2++); T b = c.pow(1 << (m - m2 - 1)); m = m2, c = b * b, t *= c, r *= b; } } T inv_2 = T(2).inv(); F f = F(*this) >> d, res = F{r}; while (res.size() < f.size()) { res.resize(min(f.size(), 2 * res.size()), T(0)); res = (res + res.inv() * f) * inv_2; } res <<= d / 2; return res; } F div_poly(const F &g) const { int n = (*this).size(), m = g.size(); int k = n - m + 1; if (k <= 0) return F{}; F f2 = F(*this), g2 = F(g); reverse(f2.begin(), f2.end()); reverse(g2.begin(), g2.end()); f2.resize(k, T(0)), g2.resize(k, T(0)); F q = f2 / g2; reverse(q.begin(), q.end()); while (!q.empty() && q.back() == T(0)) q.pop_back(); return q; } pair divmod(const F &g) const { int m = g.size(); assert(m != 0); F q = (*this).div_poly(g); F f3 = F(*this), g3 = F(g), q3 = F(q); f3.resize(m - 1, T(0)), g3.resize(m - 1, T(0)), q3.resize(m - 1, T(0)); F r = f3 - q3 * g3; while (!r.empty() && r.back() == T(0)) r.pop_back(); return make_pair(q, r); } F operator%(const F &g) const { return (*this).divmod(g).second; } F &operator%=(const F &g) { return (*this) = (*this) % g; } T eval(const T &x) { T res(0); for (int i = (int)(*this).size() - 1; i >= 0; i--) { res *= x; res += (*this)[i]; } return res; } F taylor_shift(const T &c) { int n = (*this).size(); F fac(n), finv(n); fac[0] = 1; for (int i = 1; i < n; i++) fac[i] = fac[i - 1] * i; finv[n - 1] = fac[n - 1].inv(); for (int i = n - 2; i >= 0; i--) finv[i] = finv[i + 1] * (i + 1); F f = F(*this), g = F(n); for (int i = 0; i < n; i++) f[i] *= fac[i]; g[0] = 1; for (int i = 1; i < n; i++) g[i] = c * g[i - 1]; for (int i = 0; i < n; i++) g[i] *= finv[i]; reverse(f.begin(), f.end()); F h = f * g; reverse(h.begin(), h.end()); for (int i = 0; i < n; i++) h[i] *= finv[i]; return h; } vector eval_multipoint(const vector &xs) { int m0 = xs.size(), m = 1; while (m < m0) m <<= 1; vector node(2 * m, F{1}); for (int i = 0; i < m0; i++) node[m + i] = {-xs[i], T(1)}; for (int i = m - 1; i > 0; i--) node[i] = convolution2(node[i << 1], node[(i << 1) | 1]); node[1] = (*this).divmod(node[1]).second; for (int i = 2; i < m + m0; i++) node[i] = node[i >> 1].divmod(node[i]).second; vector res(m0); for (int i = 0; i < m0; i++) res[i] = node[m + i].empty() ? T(0) : node[m + i][0]; return res; } }; // (次数, 係数) を昇順に並べたもの template struct SparseFormalPowerSeries : vector> { using vector>::vector; using vector>::operator=; using F = FormalPowerSeries; using S = SparseFormalPowerSeries; F to_fps(int n) const { F res(n, T(0)); for (auto [d, a] : (*this)) res[d] += a; return res; } SparseFormalPowerSeries(const F &f) { (*this).clear(); for (int i = 0; i < (int)f.size(); i++) { if (f[i] != T(0)) (*this).emplace_back(make_pair(i, f[i])); } } S operator-() const { S res(*this); for (auto &[d, a] : res) a = -a; return res; } S operator*=(const T &k) { for (auto &[d, a] : (*this)) a *= k; return (*this); } S operator/=(const T &k) { (*this) *= k.inv(); return (*this); } S operator*(const T &k) const { return (*this) *= k; } S operator/(const T &k) const { return (*this) /= k; } S operator+(const S &g) const { S res; int n = (*this).size(), m = g.size(), i = 0, j = 0; while (i < n || j < m) { pair tmp; if (j == m || (i != n && (*this)[i].first <= g[j].first)) tmp = (*this)[i++]; else tmp = g[j++]; if (!res.empty() && res.back().first == tmp.first) res.back().second += tmp.second; else res.emplace_back(tmp); } return res; } S operator-(const S &g) const { S res; int n = (*this).size(), m = g.size(), i = 0, j = 0; while (i < n || j < m) { pair tmp; if (j == m || (i != n && (*this)[i].first <= g[j].first)) tmp = (*this)[i++]; else { tmp = g[j++]; tmp.second = -tmp.second; } if (!res.empty() && res.back().first == tmp.first) res.back().second += tmp.second; else res.emplace_back(tmp); } return res; } S operator*(const S &g) const { S res; for (auto [d, a] : (*this)) for (auto [e, b] : (*this)) res.emplace_back(make_pair(d + e, a * b)); sort(res.begin(), res.end()); S res2; for (auto da : res) { auto [d, a] = da; if (res2.empty() || res2.back() != d) res2.emplace_back(da); else res2.back() += a; } return res; } S operator+=(const S &g) { return (*this) = (*this) + g; } S operator-=(const S &g) { return (*this) = (*this) - g; } S operator*=(const S &g) { return (*this) = (*this) * g; } S operator<<=(ll k) { for (auto &[d, a] : (*this)) d += k; return (*this); } S operator<<(ll k) const { return (*this) <<= k; } S operator>>(ll k) const { S res; for (auto [d, a] : (*this)) { d -= k; if (d >= 0) res.emplace_back(make_pair(d, a)); } return res; } S operator>>=(ll k) { return (*this) = (*this) >> k; } F inv(int n) const { F f(n, T(0)); f.front() = T(1); return f / (*this); } S differentiate() { for (auto &[d, a] : (*this)) a *= d--; if (!(*this).empty() && (*this).front().first == -1) (*this).erase((*this).begin()); return (*this); } S differential() const { return S(*this).differentiate(); } S integrate() { for (auto &[d, a] : (*this)) a /= T(++d); return (*this); } S integral() const { return S(*this).integrate(); } F log(int n) const { F f = (*this).to_fps(n); return (f.differential() / (*this)).integral(); } F exp(int n) const { vector minv(n); minv[1] = T(1); for (int i = 2; i < n; i++) minv[i] = -minv[T::mod() % i] * (T::mod() / i); S fd = (*this).differential(); F g(n, T(0)); g[0] = T(1); for (int i = 0; i < n - 1; i++) { for (auto [d, a] : fd) { if (i - d < 0) break; g[i + 1] += a * g[i - d]; } g[i + 1] *= minv[i + 1]; } return g; } // バグっています F pow(ll m, int n) const { if (m == 0) { F res(n, T(0)); res.front() = T(1); return res; } if ((*this).empty()) return F(n, T(0)); vector minv(n); minv[1] = T(1); for (int i = 2; i < n; i++) minv[i] = -minv[T::mod() % i] * (T::mod() / i); S f = (*this) >> (*this).front().first; S fd = f.differential(); F g(n, T(0)), gd(n, T(0)); g[0] = f.front().second.pow(m); int len = m > n ? n - 1 : min(f.back().first * m, ll(n - 1)); for (int i = 0; i < len; i++) { for (auto [d, a] : fd) { if (i - d < 0) break; gd[i] += a * g[i - d]; } gd[i] *= m; for (auto [d, a] : f) { if (d == 0) continue; if (i - d < 0) break; gd[i] -= a * gd[i - d]; } g[i + 1] = gd[i] * minv[i + 1]; } return g << ((*this).front().first != 0 && m > n ? n : (*this).front().first * m); } }; template struct RationalFormalPowerSeries { using F = FormalPowerSeries; using R = RationalFormalPowerSeries; F num, den; R operator-() const { R res(*this); res.num = -res.num; return res; } R operator*=(const T &k) { (*this).num *= k; return *this; } R operator*(const T &k) const { return R(*this) *= k; } friend R operator*(const T k, const R &r) { return r * k; } R operator/=(const T &k) { (*this).den *= k; return k; } R operator/(const T &k) const { return R(*this) /= k; } R &operator+=(const R &r) { F f, g; f = f.convolution2((*this).num, r.den); g = g.convolution2((*this).den, r.num); (*this).num = f + g; (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator+(const R &r) const { return R(*this) += r; } R &operator-=(const R &r) { F f, g; f = f.convolution2((*this).num, r.den); g = g.convolution2((*this).den, r.num); (*this).num = f - g; (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator-(const R &r) const { return R(*this) -= r; } R operator*=(const R &r) { (*this).num = (*this).num.convolution2((*this).num, r.num); (*this).den = (*this).den.convolution2((*this).den, r.den); return *this; } R operator*(const R &r) const { return R(*this) *= r; } R operator/=(const R &r) { (*this).num = (*this).num.convolution2((*this).num, r.den); (*this).den = (*this).den.convolution2((*this).den, r.num); return *this; } R operator/(const R &r) const { return R(*this) /= r; } R inv() { R res(*this); swap(res.num, res.den); return res; } }; template FormalPowerSeries convolution_many(const vector> &fs, int d = -1) { using F = FormalPowerSeries; if ((int)fs.size() == 0) return F{1}; deque deq; for (auto f : fs) deq.push_back(f); while ((int)deq.size() > 1) { F f = deq.front(); deq.pop_front(); F g = deq.front(); deq.pop_front(); f = f.convolution2(f, g, d); deq.push_back(f); } if (d != -1) deq.front().resize(d); return deq.front(); } template RationalFormalPowerSeries rational_sum(const vector> &rs, int d = -1) { using R = RationalFormalPowerSeries; if (rs.size() == 0) return R{{1}, {1}}; vector res = vector(rs); while (res.size() > 1) { vector nxt; for (int i = 0; i < (int)res.size(); i += 2) { if (i + 1 < (int)res.size()) nxt.emplace_back(res[i] + res[i + 1]); else nxt.emplace_back(res[i]); if (d != -1) { if ((int)nxt.back().num.size() > d) nxt.back().num.resize(d); if ((int)nxt.back().den.size() > d) nxt.back().den.resize(d); } } res = nxt; } if (d != -1) res.front().num.resize(d), res.front().den.resize(d); return res.front(); } template FormalPowerSeries interpolation(const vector &xs, const vector &ys) { using F = FormalPowerSeries; using R = RationalFormalPowerSeries; int n = xs.size(); assert(n == ys.size()); vector fs(n); for (int i = 0; i < n; i++) fs[i] = F{-xs[i], T(1)}; F g = convolution_many(fs); F h = g.differential(); vector a = h.eval_multipoint(xs); vector rs(n); for (int i = 0; i < n; i++) rs[i] = R{F{ys[i] / a[i]}, fs[i]}; R q = rational_sum(rs, n); return q.num; } // prod[d in D](1 + cx^d) を M 次の項まで求める template FormalPowerSeries multiply_many(const int &M, const T &c, const vector &D) { using F = FormalPowerSeries; vector cnt(M + 1, 0); for (auto d : D) { if (d < 0 || M < d) continue; cnt[d]++; } vector inv(M + 1); inv[1] = T(1); for (int i = 2; i <= M; i++) inv[i] = -inv[T::mod() % i] * (T::mod() / i); F f(M + 1, 0); for (int k = 1; k <= M; k++) { T pw = 1; for (int i = 1; k * i <= M; i++) { pw *= c; if (i & 1) f[k * i] += T::raw(cnt[k]) * pw * inv[i]; else f[k * i] -= T::raw(cnt[k]) * pw * inv[i]; } } return f.exp(); } // 多重集合 S の要素から何個か選んで総和を 0, 1, …, M にする方法の数 template FormalPowerSeries subset_sum(const int &M, const vector &S) { return multiply_many(M, T(1), S); } // 集合 S の各要素が無限個ある集合 T から何個か選んで総和を 0, 1, …, M にする方法の数 template FormalPowerSeries partition(const int &M, const vector &S) { return multiply_many(M, T(-1), S).inv(); } template FormalPowerSeries stirling1(const int &N) { using F = FormalPowerSeries; using S = vector>; if (N == 0) return {1}; if (N == 1) return {0, 1}; if (N & 1) { F f = stirling1(N - 1); f.resize(N + 1, T(0)); return f * S{{0, 1 - N}, {1, 1}}; } else { F f = stirling1(N / 2); f.resize(N + 1, T(0)); F g = f.taylor_shift(-(N / 2)); return f * g; } } template FormalPowerSeries stirling2(const int &N) { using F = FormalPowerSeries; vector fac(N + 1, T(0)), finv(N + 1, T(0)); fac[0] = T(1); for (int i = 1; i <= N; i++) fac[i] = fac[i - 1] * i; finv[N] = fac[N].inv(); for (int i = N - 1; i >= 0; i--) finv[i] = finv[i + 1] * (i + 1); vector minfactor(N + 1, -1); for (int i = 2; i <= N; i++) { if (minfactor[i] != -1) continue; for (int k = 2 * i; k <= N; k += i) minfactor[k] = i; } vector power(N + 1); for (int i = 0; i <= N; i++) { if (minfactor[i] == -1) power[i] = T(i).pow(N); else power[i] = power[minfactor[i]] * power[i / minfactor[i]]; } F A(N + 1), B(N + 1); for (int i = 0; i <= N; i++) { A[i] = power[i] * finv[i]; B[i] = (i & 1) ? -finv[i] : finv[i]; } return A * B; } template FormalPowerSeries bernoulli_number(const int &N) { using F = FormalPowerSeries; F fac(N + 2, T(0)), finv(N + 2, T(0)); fac[0] = T(1); for (int i = 1; i <= N + 1; i++) fac[i] = fac[i - 1] * i; finv[N + 1] = fac[N + 1].inv(); for (int i = N; i >= 0; i--) finv[i] = finv[i + 1] * (i + 1); F f = (finv >> 1).inv(); for (int i = 0; i <= N; i++) f[i] *= fac[i]; f.pop_back(); return f; } // [x^N] P(x)/Q(x) を求める(P の次数は Q の次数より小さい) template T bostan_mori(const FormalPowerSeries &P, const FormalPowerSeries &Q, ll N) { using F = FormalPowerSeries; int d = (int)Q.size() - 1; assert((int)P.size() <= d); if (is_ntt_friendly) { int z = 1; while (z < 2 * d + 1) z <<= 1; T iz = T(z).inv(); F U = F(P), V = F(Q); U.resize(z), V.resize(z); while (N > 0) { U.butterfly2(U), V.butterfly2(V); for (int i = 0; i < z; i += 2) { T x = V[i + 1], y = V[i]; U[i] *= x, V[i] *= x; U[i + 1] *= y, V[i + 1] *= y; } U.butterfly_inv2(U), V.butterfly_inv2(V); for (int i = 0; i < (z >> 1); i++) { U[i] = U[2 * i + (N & 1)] * iz; V[i] = V[2 * i] * iz; } for (int i = (z >> 1); i < z; i++) U[i] = 0, V[i] = 0; N >>= 1; } return U.front() / V.front(); } else { F U = F(P), V = F(Q); U.resize(d), V.resize(d + 1); while (N > 0) { F U2 = F(U), V2 = F(V), V3 = F(V); for (int i = 1; i <= d; i += 2) V3[i] = -V3[i]; U2 *= V3, V2 *= V3; for (int i = 0; i <= d; i++) { U[i] = U2[2 * i + (N & 1)]; V[i] = V2[2 * i]; } N >>= 1; } return U.front() / V.front(); } } // a_n = sum[i = 1..d] c_i a_{n-i}(n ≥ d)を満たすとき、a_N を求める(A は 0-indexed で C は 1-indexed) template T linear_recurrence(const vector &A, const vector &C, ll N) { using F = FormalPowerSeries; int d = C.size(); assert((int)A.size() >= d); F Ga(d), Q(d + 1); Q[0] = 1; for (int i = 0; i < d; i++) Ga[i] = A[i], Q[i + 1] = -C[i]; F P = Ga * Q; return bostan_mori(P, Q, N); } // https://37zigen.com/multipoint-evaluation/#i-2 template T factorial_fast(ll N) { using F = FormalPowerSeries; if (N >= T::mod()) return 0; int M = sqrt(N); vector fs(M); for (int i = 0; i < M; i++) fs[i] = {i + 1, 1}; F f = convolution_many(fs); vector xs(M); for (int i = 0; i < M; i++) xs[i] = i * M; vector ys = f.eval_multipoint(xs); T res = 1; for (auto y : ys) res *= y; for (int i = M * M + 1; i <= N; i++) res *= i; return res; } //* using mint = modint998244353; const bool ntt = true; //*/ /* using mint = modint1000000007; const bool ntt = false; //*/ /* using mint = modint; const bool ntt = false; //*/ using fps = FormalPowerSeries; using sfps = SparseFormalPowerSeries; using rfps = RationalFormalPowerSeries; int main() { ll N, M; cin >> N >> M; fps g(N + 1, 0); for (ll i = 1; i <= M; i++) { for (ll j = 0; i * j <= N; j++) { if (1 + i * j <= N) g.at(1 + i * j) += 1; if (i + i * j <= N) g.at(i + i * j) -= 1; } } fps f = (fps{1} - g).inv(); mint ans = mint(M).pow(N) - f.at(N); cout << ans.val() << endl; }