#include namespace suisen { template bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } template bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template constexpr int pow_m1(T n) { return -(n & 1) | 1; } template constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); } template constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); } } namespace suisen::macro { #define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() { return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; } template == std::is_signed_v), std::nullptr_t> = nullptr> struct rep_impl { Int _val; const Int _end, _step; rep_impl(Int n) : rep_impl(0, n) {} rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {} IMPL_REPITER((_val < _end)) }; template == std::is_signed_v), std::nullptr_t> = nullptr> struct rrep_impl { Int _val; const Int _end, _step; rrep_impl(Int n) : rrep_impl(0, n) {} rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {} rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld(r - l - 1, step) * step), _end(l), _step(-step) {} IMPL_REPITER((_val >= _end)) }; template struct repinf_impl { Int _val; const Int _step; repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {} IMPL_REPITER((true)) }; #undef IMPL_REPITER } #include #include #include namespace suisen { template using constraints_t = std::enable_if_t, std::nullptr_t>; template struct bitnum { static constexpr int value = 0; }; template struct bitnum>> { static constexpr int value = std::numeric_limits>::digits; }; template static constexpr int bitnum_v = bitnum::value; template struct is_nbit { static constexpr bool value = bitnum_v == n; }; template static constexpr bool is_nbit_v = is_nbit::value; template struct safely_multipliable { using type = T; }; template struct safely_multipliable, is_nbit>> { using type = long long; }; template struct safely_multipliable, is_nbit>> { using type = __int128_t; }; template struct safely_multipliable, is_nbit>> { using type = unsigned long long; }; template struct safely_multipliable, is_nbit>> { using type = __uint128_t; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; template class is_iterable { template static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_iterable_v = is_iterable::value; template class is_writable { template static auto test(T_ e) -> decltype(std::declval() << e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_writable_v = is_writable::value; template class is_readable { template static auto test(T_ e) -> decltype(std::declval() >> e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_readable_v = is_readable::value; } // namespace suisen namespace suisen::io { template >, std::negation>>>, std::nullptr_t> = nullptr> struct InputStream { private: using istream_type = std::remove_reference_t; IStream is; struct { InputStream* is; template operator T() { T e; *is >> e; return e; } } _reader{ this }; public: template InputStream(IStream_ &&is) : is(std::move(is)) {} template InputStream(IStream_ &is) : is(is) {} template InputStream& operator>>(T& e) { if constexpr (suisen::is_readable_v) is >> e; else _read(e); return *this; } auto read() { return _reader; } template void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); } istream_type& get_stream() { return is; } private: static __uint128_t _stou128(const std::string& s) { __uint128_t ret = 0; for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0'; return ret; } static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); } void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); } void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); } template void _read(std::pair& a) { *this >> a.first >> a.second; } template void _read(std::tuple& a) { if constexpr (N < sizeof...(Args)) *this >> std::get(a), _read(a); } template , std::nullptr_t> = nullptr> void _read(Iterable& a) { for (auto& e : a) *this >> e; } }; template InputStream(IStream &&) -> InputStream; template InputStream(IStream &) -> InputStream; InputStream cin{ std::cin }; auto read() { return cin.read(); } template void read(Head& head, Tail &...tails) { cin.read(head, tails...); } } // namespace suisen::io namespace suisen { using io::read; } // namespace suisen namespace suisen::io { template >, std::negation>>>, std::nullptr_t> = nullptr> struct OutputStream { private: using ostream_type = std::remove_reference_t; OStream os; public: template OutputStream(OStream_ &&os) : os(std::move(os)) {} template OutputStream(OStream_ &os) : os(os) {} template OutputStream& operator<<(const T& e) { if constexpr (suisen::is_writable_v) os << e; else _print(e); return *this; } void print() { *this << '\n'; } template void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; } template , std::nullptr_t> = nullptr> void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") { for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep; *this << end; } ostream_type& get_stream() { return os; } private: void _print(__uint128_t value) { char buffer[41], *d = std::end(buffer); do *--d = '0' + (value % 10), value /= 10; while (value); os.rdbuf()->sputn(d, std::end(buffer) - d); } void _print(__int128_t value) { if (value < 0) *this << '-'; _print(__uint128_t(value < 0 ? -value : value)); } template void _print(const std::pair& a) { *this << a.first << ' ' << a.second; } template void _print(const std::tuple& a) { if constexpr (N < std::tuple_size_v>) { if constexpr (N) *this << ' '; *this << std::get(a), _print(a); } } template , std::nullptr_t> = nullptr> void _print(const Iterable& a) { print_all(a, " ", ""); } }; template OutputStream(OStream_ &&) -> OutputStream; template OutputStream(OStream_ &) -> OutputStream; OutputStream cout{ std::cout }, cerr{ std::cerr }; template void print(const Args &... args) { cout.print(args...); } template , std::nullptr_t> = nullptr> void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); } } // namespace suisen::io namespace suisen { using io::print, io::print_all; } // namespace suisen namespace suisen { template , std::enable_if_t, std::is_invocable_r, std::invoke_result_t>>, std::nullptr_t> = nullptr> auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) { return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); }; } template , std::nullptr_t> = nullptr> std::vector sorted_indices(int n, const Compare& compare) { std::vector p(n); return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p; } template , std::nullptr_t> = nullptr> std::vector sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator(to_key)); } template auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue, Comparator>{ comparator }; } template , std::nullptr_t> = nullptr> void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); } template struct Dim : std::array { template Dim(const Ints& ...ns) : std::array::array{ static_cast(ns)... } {} }; template Dim(const Ints& ...) -> Dim; template auto ndvec(const Dim &ns, const T& value = {}) { if constexpr (I + 1 < D) { return std::vector(ns[I], ndvec(ns, value)); } else { return std::vector(ns[I], value); } } } namespace suisen { using int128 = __int128_t; using uint128 = __uint128_t; template using min_priority_queue = std::priority_queue, std::greater>; template using max_priority_queue = std::priority_queue, std::less>; } namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; } #ifdef LOCAL # define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__) template void debug_impl(const char* s, const H& h, const Ts&... t) { suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n")); } #else # define debug(...) void(0) #endif #define FOR(e, v) for (auto &&e : v) #define CFOR(e, v) for (const auto &e : v) #define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__)) #define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__)) #define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__)) #define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n)) #define ALL(iterable) std::begin(iterable), std::end(iterable) using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; constexpr int iinf = std::numeric_limits::max() / 2; constexpr long long linf = std::numeric_limits::max() / 2; #include #include #include #include #include #include #include #include #include namespace suisen { namespace internal::montgomery { template struct Montgomery { private: static constexpr uint32_t bits = std::numeric_limits::digits; static constexpr Int mask = ~Int(0); // R = 2**32 or 2**64 // 1. N is an odd number // 2. N < R // 3. gcd(N, R) = 1 // 4. R * R2 - N * N2 = 1 // 5. 0 < R2 < N // 6. 0 < N2 < R Int N, N2, R2; // RR = R * R (mod N) Int RR; public: constexpr Montgomery() = default; explicit constexpr Montgomery(Int N) : N(N), N2(calcN2(N)), R2(calcR2(N, N2)), RR(calcRR(N)) { assert(N & 1); } // @returns t * R (mod N) constexpr Int make(Int t) const { return reduce(static_cast(t) * RR); } // @returns T * R^(-1) (mod N) constexpr Int reduce(DInt T) const { // 0 <= T < RN // Note: // 1. m = T * N2 (mod R) // 2. 0 <= m < R DInt m = modR(static_cast(modR(T)) * N2); // Note: // T + m * N = T + T * N * N2 = T + T * (R * R2 - 1) = 0 (mod R) // => (T + m * N) / R is an integer. // => t * R = T + m * N = T (mod N) // => t = T R^(-1) (mod N) DInt t = divR(T + m * N); // Note: // 1. 0 <= T < RN // 2. 0 <= mN < RN (because 0 <= m < R) // => 0 <= T + mN < 2RN // => 0 <= t < 2N return t >= N ? t - N : t; } constexpr Int add(Int A, Int B) const { return (A += B) >= N ? A - N : A; } constexpr Int sub(Int A, Int B) const { return (A -= B) < 0 ? A + N : A; } constexpr Int mul(Int A, Int B) const { return reduce(static_cast(A) * B); } constexpr Int div(Int A, Int B) const { return reduce(static_cast(A) * inv(B)); } constexpr Int inv(Int A) const; // TODO: Implement constexpr Int pow(Int A, long long b) const { Int P = make(1); for (; b; b >>= 1) { if (b & 1) P = mul(P, A); A = mul(A, A); } return P; } private: static constexpr Int divR(DInt t) { return t >> bits; } static constexpr Int modR(DInt t) { return t & mask; } static constexpr Int calcN2(Int N) { // - N * N2 = 1 (mod R) // N2 = -N^{-1} (mod R) // calculates N^{-1} (mod R) by Newton's method DInt invN = N; // = N^{-1} (mod 2^2) for (uint32_t cur_bits = 2; cur_bits < bits; cur_bits *= 2) { // loop invariant: invN = N^{-1} (mod 2^cur_bits) // x = a^{-1} mod m => x(2-ax) = a^{-1} mod m^2 because: // ax = 1 (mod m) // => (ax-1)^2 = 0 (mod m^2) // => 2ax - a^2x^2 = 1 (mod m^2) // => a(x(2-ax)) = 1 (mod m^2) invN = modR(invN * modR(2 - N * invN)); } assert(modR(N * invN) == 1); return modR(-invN); } static constexpr Int calcR2(Int N, Int N2) { // R * R2 - N * N2 = 1 // => R2 = (1 + N * N2) / R return divR(1 + static_cast(N) * N2); } static constexpr Int calcRR(Int N) { return -DInt(N) % N; } }; } // namespace internal::montgomery using Montgomery32 = internal::montgomery::Montgomery; using Montgomery64 = internal::montgomery::Montgomery; } // namespace suisen namespace suisen::miller_rabin { namespace internal { constexpr uint64_t THRESHOLD_1 = 341531ULL; constexpr uint64_t BASE_1[]{ 9345883071009581737ULL }; constexpr uint64_t THRESHOLD_2 = 1050535501ULL; constexpr uint64_t BASE_2[]{ 336781006125ULL, 9639812373923155ULL }; constexpr uint64_t THRESHOLD_3 = 350269456337ULL; constexpr uint64_t BASE_3[]{ 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL }; constexpr uint64_t THRESHOLD_4 = 55245642489451ULL; constexpr uint64_t BASE_4[]{ 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL }; constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL; constexpr uint64_t BASE_5[]{ 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL }; constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL; constexpr uint64_t BASE_6[]{ 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL, 1263739024124850375ULL }; constexpr uint64_t BASE_7[]{ 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U }; template constexpr bool miller_rabin(uint64_t n) { if (n == 2 or n == 3 or n == 5 or n == 7) return true; if (n <= 1 or n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false; if (n < 121) return true; const uint32_t s = __builtin_ctzll(n - 1); // >= 1 const uint64_t d = (n - 1) >> s; const Montgomery64 mg{ n }; const uint64_t one = mg.make(1), minus_one = mg.make(n - 1); for (std::size_t i = 0; i < SIZE; ++i) { uint64_t a = BASE[i] % n; if (a == 0) continue; uint64_t Y = mg.pow(mg.make(a), d); if (Y == one) continue; for (uint32_t r = 0;; ++r, Y = mg.mul(Y, Y)) { // Y = a^(d 2^r) if (Y == minus_one) break; if (r == s - 1) return false; } } return true; } } template , std::nullptr_t> = nullptr> constexpr bool is_prime(T n) { if constexpr (std::is_signed_v) { assert(n >= 0); } const std::make_unsigned_t n_unsigned = n; assert(n_unsigned <= std::numeric_limits::max()); // n < 2^64 using namespace internal; if (n_unsigned < THRESHOLD_1) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_2) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_3) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_4) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_5) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_6) return miller_rabin(n_unsigned); return miller_rabin(n_unsigned); } } // namespace suisen::miller_rabin #include namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template std::uint8_t SimpleSieve::flag[SimpleSieve::siz]; template class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template unsigned int Sieve::pf[Sieve::base_max + internal::sieve::K]; } // namespace suisen namespace suisen::fast_factorize { namespace internal { template constexpr int floor_log2(T n) { int i = 0; while (n) n >>= 1, ++i; return i - 1; } template , std::nullptr_t> = nullptr> T pollard_rho(const T n) { using M = safely_multipliable_t; const T m = T(1) << (floor_log2(n) / 5); static std::mt19937_64 rng{std::random_device{}()}; std::uniform_int_distribution dist(0, n - 1); // const Montgomery64 mg{n}; while (true) { T c = dist(rng); auto f = [&](T x) -> T { return (M(x) * x + c) % n; }; T x, y = 2, ys, q = 1, g = 1; for (T r = 1; g == 1; r <<= 1) { x = y; for (T i = 0; i < r; ++i) y = f(y); for (T k = 0; k < r and g == 1; k += m) { ys = y; for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n; g = std::gcd(q, n); } } if (g == n) { g = 1; while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n); } if (g < n) { if (miller_rabin::is_prime(g)) return g; if (T d = n / g; miller_rabin::is_prime(d)) return d; return pollard_rho(g); } } } } template , std::nullptr_t> = nullptr> std::vector> factorize(T n) { static constexpr int threshold = 1000000; static Sieve sieve; std::vector> res; if (n <= threshold) { for (auto [p, q] : sieve.factorize(n)) res.emplace_back(p, q); return res; } if ((n & 1) == 0) { int q = 0; do ++q, n >>= 1; while ((n & 1) == 0); res.emplace_back(2, q); } for (T p = 3; p * p <= n; p += 2) { if (p >= 101 and n >= 1 << 20) { while (n > 1) { if (miller_rabin::is_prime(n)) { res.emplace_back(std::exchange(n, 1), 1); } else { p = internal::pollard_rho(n); int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } break; } if (n % p == 0) { int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } if (n > 1) res.emplace_back(n, 1); return res; } } // namespace suisen::fast_factorize #include namespace suisen { struct UnionFind { UnionFind() = default; explicit UnionFind(int _n) : _n(_n), _dat(_n, -1) {} // Get the root of `x`. equivalent to `operator[](x)` int root(int x) { static std::vector buf; while (_dat[x] >= 0) buf.push_back(x), x = _dat[x]; while (buf.size()) _dat[buf.back()] = x, buf.pop_back(); return x; } // Get the root of `x`. euivalent to `root(x)` int operator[](int x) { return root(x); } // Merge two vertices `x` and `y`. bool merge(int x, int y) { x = root(x), y = root(y); if (x == y) return false; if (_dat[x] > _dat[y]) std::swap(x, y); _dat[x] += _dat[y], _dat[y] = x; return true; } // Check if `x` and `y` belongs to the same connected component. bool same(int x, int y) { return root(x) == root(y); } // Get the size of connected componet to which `x` belongs. int size(int x) { return -_dat[root(x)]; } // Get all of connected components. std::vector> groups() { std::vector> res(_n); for (int i = 0; i < _n; ++i) res[root(i)].push_back(i); res.erase(std::remove_if(res.begin(), res.end(), [](const auto& g) { return g.empty(); }), res.end()); return res; } protected: int _n; std::vector _dat; }; } // namespace suisen namespace suisen { struct LinkedUnionFind : public UnionFind { LinkedUnionFind() = default; explicit LinkedUnionFind(int n) : UnionFind(n), _link(n) { std::iota(_link.begin(), _link.end(), 0); } // Merge two vertices `x` and `y`. bool merge(int x, int y) { if (UnionFind::merge(x, y)) { std::swap(_link[x], _link[y]); return true; } return false; } // Get items connected to `x` (including `x`). Let the size of return value be `m`, time complexity is O(m). std::vector connected_component(int x) const { std::vector comp{ x }; for (int y = _link[x]; y != x; y = _link[y]) comp.push_back(y); return comp; } protected: std::vector _link; }; } // namespace suisen #include using mint = atcoder::modint998244353; namespace atcoder { std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } } // namespace atcoder void solve() { int n, m; read(n, m); vector a(n); read(a); vector ps; vector> fac(n); REP(i, n) { for (auto [p, q] : fast_factorize::factorize(a[i])) { ps.push_back(p); fac[i][p] = q; } } sort_unique_erase(ps); vector> g(n); REP(i, m) { int u, v; read(u, v); --u, --v; g[u].push_back(v); g[v].push_back(u); } vector ans(n, 1); for (int p : ps) { vector qs(n); REP(i, n) { auto it = fac[i].find(p); qs[i] = it == fac[i].end() ? 0 : it->second; } vector vs = sorted_indices(n, [&](int i) { return qs[i]; }); vector min_max_qs(n); LinkedUnionFind uf(n); for (int v : vs) { for (int u : g[v]) if (qs[u] <= qs[v]) { if (uf.same(u, v)) continue; int r = uf.root(0); if (r == uf.root(u)) { for (int x : uf.connected_component(v)) { min_max_qs[x] = qs[v]; } } else if (r == uf.root(v)) { for (int x : uf.connected_component(u)) { min_max_qs[x] = qs[v]; } } uf.merge(u, v); } } REP(i, n) { ans[i] *= mint(p).pow(min_max_qs[i]); } } ans[0] = a[0]; print_all(ans, "\n"); } int main() { int test_case_num = 1; // read(test_case_num); LOOP(test_case_num) solve(); return 0; }