#include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 998244353; // constexpr int MOD = 1000000007; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template struct MInt { unsigned int v; constexpr MInt() : v(0) {} constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr MInt raw(const int x) { MInt x_; x_.v = x; return x_; } static constexpr int get_mod() { return M; } static constexpr void set_mod(const int divisor) { assert(std::cmp_equal(divisor, M)); } static void init(const int x) { inv(x); fact(x); fact_inv(x); } template static MInt inv(const int n) { // assert(0 <= n && n < M && std::gcd(n, M) == 1); static std::vector inverse{0, 1}; const int prev = inverse.size(); if (n < prev) return inverse[n]; if constexpr (MEMOIZES) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * raw(M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector factorial{1}; if (const int prev = factorial.size(); n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector f_inv{1}; if (const int prev = f_inv.size(); n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) [[unlikely]] return MInt(); inv(k); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } constexpr MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } constexpr MInt& operator+=(const MInt& x) { if ((v += x.v) >= M) v -= M; return *this; } constexpr MInt& operator-=(const MInt& x) { if ((v += M - x.v) >= M) v -= M; return *this; } constexpr MInt& operator*=(const MInt& x) { v = (unsigned long long){v} * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } constexpr auto operator<=>(const MInt& x) const = default; constexpr MInt& operator++() { if (++v == M) [[unlikely]] v = 0; return *this; } constexpr MInt operator++(int) { const MInt res = *this; ++*this; return res; } constexpr MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } constexpr MInt operator--(int) { const MInt res = *this; --*this; return res; } constexpr MInt operator+() const { return *this; } constexpr MInt operator-() const { return raw(v ? M - v : 0); } constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; } constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; } constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt; template struct CumulativeSum2D { explicit CumulativeSum2D(const int h, const int w) : CumulativeSum2D(std::vector>(h, std::vector(w, 0))) {} template explicit CumulativeSum2D(const std::vector>& a) : is_built(false), h(a.size()), w(a.front().size()), data(h + 1, std::vector(w + 1, 0)) { for (int i = 0; i < h; ++i) { std::copy(a[i].begin(), a[i].end(), std::next(data[i + 1].begin())); } } void add(const int y, const int x, const T val) { assert(!is_built); data[y + 1][x + 1] += val; } void build() { assert(!is_built); is_built = true; for (int i = 0; i < h; ++i) { std::partial_sum(data[i + 1].begin(), data[i + 1].end(), data[i + 1].begin()); } for (int j = 1; j <= w; ++j) { for (int i = 1; i < h; ++i) { data[i + 1][j] += data[i][j]; } } } T query(const int y1, const int x1, const int y2, const int x2) const { assert(is_built); return y1 > y2 || x1 > x2 ? 0 : data[y2 + 1][x2 + 1] - data[y2 + 1][x1] - data[y1][x2 + 1] + data[y1][x1]; } bool is_built; const int h, w; std::vector> data; }; int main() { int n, m; cin >> n >> m; vector lx(n), uy(n), rx(n), dy(n); REP(i, n) { ll x, y; int h; cin >> x >> y >> h; const int diam = m - h; lx[i] = x - y - diam; rx[i] = x - y + diam; uy[i] = x + y - diam; dy[i] = x + y + diam ; } vector x(n * 2), y(n * 2); ranges::copy(lx, x.begin()); ranges::copy(rx, next(x.begin(), n)); ranges::sort(x); x.erase(unique(x.begin(), x.end()), x.end()); ranges::copy(uy, y.begin()); ranges::copy(dy, next(y.begin(), n)); ranges::sort(y); y.erase(unique(y.begin(), y.end()), y.end()); CumulativeSum2D sum(y.size(), x.size()); REP(i, n) { const int y1 = distance(y.begin(), ranges::lower_bound(y, uy[i])); const int y2 = distance(y.begin(), ranges::lower_bound(y, dy[i])); const int x1 = distance(x.begin(), ranges::lower_bound(x, lx[i])); const int x2 = distance(x.begin(), ranges::lower_bound(x, rx[i])); sum.add(y1, x1, 1); sum.add(y2, x1, -1); sum.add(y1, x2, -1); sum.add(y2, x2, 1); } sum.build(); vector ans(n + 1, 0); REP(i, y.size() - 1) REP(j, x.size() - 1) { ans[sum.data[i + 1][j + 1]] += (y[i + 1] - y[i]) * (x[j + 1] - x[j]); } FOR(i, 1, n + 1) cout << ans[i] / 2 << '\n'; return 0; }