from __future__ import annotations import array import bisect import copy import fractions import heapq import itertools import math import random import re import string import sys import time from collections import defaultdict, deque from functools import lru_cache sys.setrecursionlimit(10**6) def read_int_list(): return list(map(int, input().split())) def read_int(): return int(input()) def read_str_list(): return list(input().split()) def read_str(): return input() def is_prime(n: int) -> bool: if n < 2: return False i = 2 ok = True while i * i <= n: if n % i == 0: ok = False i += 1 return ok def eratosthenes(n: int) -> list[bool]: is_prime_list = ([False, True] * (n // 2 + 1))[0 : n + 1] is_prime_list[1] = False is_prime_list[2] = True for i in range(3, n + 1, 2): if not (is_prime_list[i]): continue if i * i > n: break for k in range(i * i, n + 1, i): is_prime_list[k] = False return is_prime_list def legendre(n: int, p: int) -> int: cnt = 0 pp = p while pp <= n: cnt += n // pp pp *= p return cnt def prime_factorize(n: int) -> defaultdict[int, int]: nn = n i = 2 d: defaultdict[int, int] = defaultdict(int) while i * i <= n: while nn % i == 0: d[i] += 1 nn //= i i += 1 if nn != 1: d[nn] += 1 return d def make_divisors(n: int) -> list[int]: i = 1 ret = [] while i * i <= n: if n % i == 0: ret.append(i) if i != n // i: ret.append(n // i) i += 1 ret.sort() return ret def gcd(a: int, b: int) -> int: if a == 0: return b else: return gcd(b % a, a) def lcm(a: int, b: int) -> int: return a * b // gcd(a, b) def ext_gcd(a: int, b: int) -> tuple[int, int, int]: if a == 0: return (0, 1, b) x, y, g = ext_gcd(b % a, a) return (y - b // a * x, x, g) class UnionFind: def __init__(self, n): self.parent = [-1] * n self.size = n def find(self, x): if self.parent[x] < 0: return x else: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def merge(self, x, y): x = self.find(x) y = self.find(y) if x != y: if self.parent[x] > self.parent[y]: x, y = y, x self.parent[x] += self.parent[y] self.parent[y] = x self.size -= 1 return True else: return False def same(self, x, y): return self.find(x) == self.find(y) def size(self, x): return -self.parent[self.find(x)] def solve(): N=read_int() if N<1200: print("green") else: print("difficult") def main(): # t = read_int() # for _ in range(t): solve() main()