import macros macro Please(x): untyped = nnkStmtList.newTree() Please use Nim-ACL Please use Nim-ACL Please use Nim-ACL import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2]) import macros ImportExpand "cplib/tmpl/sheep.nim" <=== "when not declared CPLIB_TMPL_SHEEP:\n const CPLIB_TMPL_SHEEP* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import algorithm\n import sequtils\n import tables\n import macros\n import math\n import sets\n import strutils\n import strformat\n import sugar\n import heapqueue\n import streams\n import deques\n import bitops\n #入力系\n proc scanf(formatstr: cstring){.header: \"\", varargs.}\n proc getchar(): char {.importc: \"getchar_unlocked\", header: \"\", discardable.}\n proc ii(): int {.inline.} = scanf(\"%lld\\n\", addr result)\n proc lii(N: int): seq[int] {.inline.} = newSeqWith(N, ii())\n proc si(): string {.inline.} =\n result = \"\"\n var c: char\n while true:\n c = getchar()\n if c == ' ' or c == '\\n':\n break\n result &= c\n #chmin,chmax\n template `max=`(x, y) = x = max(x, y)\n template `min=`(x, y) = x = min(x, y)\n #bit演算\n proc `%`(x: int, y: int): int = (((x mod y)+y) mod y)\n proc `//`(x: int, y: int): int = (((x) - (x%y)) div (y))\n proc `%=`(x: var int, y: int): void = x = x%y\n proc `//=`(x: var int, y: int): void = x = x//y\n proc `**`(x: int, y: int): int = x^y\n proc `^`(x: int, y: int): int = x xor y\n proc `|`(x: int, y: int): int = x or y\n proc `&`(x: int, y: int): int = x and y\n proc `>>`(x: int, y: int): int = x shr y\n proc `<<`(x: int, y: int): int = x shl y\n proc `^=`(x: var int, y: int): void = x = x ^ y\n proc `&=`(x: var int, y: int): void = x = x & y\n proc `|=`(x: var int, y: int): void = x = x | y\n proc `>>=`(x: var int, y: int): void = x = x >> y\n proc `<<=`(x: var int, y: int): void = x = x << y\n proc `[]`(x: int, n: int): bool = (x and (1 shl n)) != 0\n proc `@`(x: int): seq[int] =\n for i in 0..<64:\n if x[i]:\n result.add(i)\n #便利な変換\n proc `!`(x: char, a = '0'): int = int(x)-int(a)\n #定数\n const INF = int(3300300300300300491)\n #converter\n\n #range\n iterator range(start: int, ends: int, step: int): int =\n var i = start\n if step < 0:\n while i > ends:\n yield i\n i += step\n elif step > 0:\n while i < ends:\n yield i\n i += step\n iterator range(ends: int): int = (for i in 0.. 0:\n var p = (i - 1) shr 1\n if v[p] < v[i]: swap v[p], v[i]\n else: break\n i = p\n proc pop_heap*[T](v: var openArray[T], p:Slice[int]) {.inline.} =\n swap v[0], v[p.b]\n var p = p\n p.b.dec\n var i = 0\n while true:\n var (c0, c1) = (i * 2 + 1, i * 2 + 2)\n if c1 in p:\n if v[c1] > v[i]:\n if v[c0] > v[c1]:\n swap(v[i], v[c0])\n i = c0\n else:\n swap(v[i], v[c1])\n i = c1\n elif v[c0] > v[i]:\n swap(v[i], v[c0])\n i = c0\n else: break\n elif c0 in p:\n if v[c0] > v[i]:\n swap(v[i], v[c0])\n i = c0\n else: break\n else: break\n discard\n\n type MCFEdge*[Cap, Cost] = object\n src*, dst*: int\n cap*, flow*: Cap\n cost*: Cost\n\n type MCFInternalEdge[Cap, Cost] = object\n dst, rev: int\n cap: Cap\n cost: Cost\n\n type MCFGraph*[Cap, Cost] = object\n n:int\n edges:seq[MCFEdge[Cap, Cost]]\n \n proc initMCFGraph*[Cap, Cost](n:int):MCFGraph[Cap, Cost] = result.n = n\n proc initMinCostFLow*[Cap, Cost](n:int):MCFGraph[Cap, Cost] = result.n = n\n\n proc add_edge*[Cap, Cost](self: var MCFGraph[Cap, Cost], src, dst:int, cap:Cap, cost:Cost):int {.discardable.} =\n assert src in 0.. r.key\n\n proc slope*[Cap, Cost](self: MCFGraph[Cap, Cost], g:var csr[MCFInternalEdge[Cap, Cost]], s, t:int, flow_limit:Cap):seq[tuple[cap:Cap, cost:Cost]] =\n ## variants (C = maxcost):\n ## -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0\n ## reduced cost (= e.cost + dual[e.src] - dual[e.to]) >= 0 for all edge\n\n ## dual_dist[i] = (dual[i], dist[i])\n var\n dual_dist = newSeq[tuple[dual, dist:Cost]](self.n)\n prev_e = newSeq[int](self.n)\n vis = newSeq[bool](self.n)\n que_min = newSeq[int]()\n que = newSeq[MCFQ[Cost]]()\n proc dual_ref(g:csr[MCFInternalEdge[Cap, Cost]]):bool =\n for i in 0.. 0 or que.len > 0:\n var v:int\n if que_min.len > 0:\n v = que_min.pop()\n else:\n while heap_r < que.len:\n heap_r.inc\n que.push_heap(0 ..< heap_r)\n v = que[0].dst\n que.pop_heap(0 ..< que.len)\n discard que.pop()\n heap_r.dec\n if vis[v]: continue\n vis[v] = true\n if v == t: break\n ## dist[v] = shortest(s, v) + dual[s] - dual[v]\n ## dist[v] >= 0 (all reduced cost are positive)\n ## dist[v] <= (n-1)C\n let (dual_v, dist_v) = dual_dist[v]\n for i in g.start[v] ..< g.start[v + 1]:\n let e = g.elist[i]\n if e.cap == Cap(0): continue\n ## |-dual[e.to] + dual[v]| <= (n-1)C\n ## cost <= C - -(n-1)C + 0 = nC\n let cost = e.cost - dual_dist[e.dst].dual + dual_v\n if dual_dist[e.dst].dist - dist_v > cost:\n let dist_to = dist_v + cost\n dual_dist[e.dst].dist = dist_to\n prev_e[e.dst] = e.rev\n if dist_to == dist_v:\n que_min.add(e.dst)\n else:\n que.add(MCFQ[Cost](key:dist_to, dst:e.dst))\n if not vis[t]:\n return false\n\n for v in 0..= 0 - (n-1)C\n dual_dist[v].dual -= dual_dist[t].dist - dual_dist[v].dist\n return true\n var\n flow:Cap = 0\n cost:Cost = 0\n prev_cost_per_flow:Cost = -1\n result = @[(Cap(0), Cost(0))]\n while flow < flow_limit:\n if not g.dual_ref(): break\n var c = flow_limit - flow\n block:\n var v = t\n while v != s:\n c = min(c, g.elist[g.elist[prev_e[v]].rev].cap)\n v = g.elist[prev_e[v]].dst\n block:\n var v = t\n while v != s:\n var e = g.elist[prev_e[v]].addr\n e[].cap += c\n g.elist[e[].rev].cap -= c\n v = g.elist[prev_e[v]].dst\n let d = -dual_dist[s].dual\n flow += c\n cost += c * d\n if prev_cost_per_flow == d:\n discard result.pop()\n result.add((flow, cost))\n prev_cost_per_flow = d\n\n proc slope*[Cap, Cost](self:var MCFGraph[Cap, Cost], s, t:int, flow_limit:Cap):seq[tuple[cap:Cap, cost:Cost]] =\n assert s in 0..