#include namespace suisen { template bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } template bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template constexpr int pow_m1(T n) { return -(n & 1) | 1; } template constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); } template constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); } } namespace suisen::macro { #define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() { return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; } template == std::is_signed_v), std::nullptr_t> = nullptr> struct rep_impl { Int _val; const Int _end, _step; rep_impl(Int n) : rep_impl(0, n) {} rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {} IMPL_REPITER((_val < _end)) }; template == std::is_signed_v), std::nullptr_t> = nullptr> struct rrep_impl { Int _val; const Int _end, _step; rrep_impl(Int n) : rrep_impl(0, n) {} rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {} rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld(r - l - 1, step) * step), _end(l), _step(-step) {} IMPL_REPITER((_val >= _end)) }; template struct repinf_impl { Int _val; const Int _step; repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {} IMPL_REPITER((true)) }; #undef IMPL_REPITER } #include #include #include namespace suisen { template using constraints_t = std::enable_if_t, std::nullptr_t>; template struct bitnum { static constexpr int value = 0; }; template struct bitnum>> { static constexpr int value = std::numeric_limits>::digits; }; template static constexpr int bitnum_v = bitnum::value; template struct is_nbit { static constexpr bool value = bitnum_v == n; }; template static constexpr bool is_nbit_v = is_nbit::value; template struct safely_multipliable { using type = T; }; template struct safely_multipliable, is_nbit>> { using type = long long; }; template struct safely_multipliable, is_nbit>> { using type = __int128_t; }; template struct safely_multipliable, is_nbit>> { using type = unsigned long long; }; template struct safely_multipliable, is_nbit>> { using type = __uint128_t; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; template class is_iterable { template static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_iterable_v = is_iterable::value; template class is_writable { template static auto test(T_ e) -> decltype(std::declval() << e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_writable_v = is_writable::value; template class is_readable { template static auto test(T_ e) -> decltype(std::declval() >> e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_readable_v = is_readable::value; } // namespace suisen namespace suisen::io { template >, std::negation>>>, std::nullptr_t> = nullptr> struct InputStream { private: using istream_type = std::remove_reference_t; IStream is; struct { InputStream* is; template operator T() { T e; *is >> e; return e; } } _reader{ this }; public: template InputStream(IStream_ &&is) : is(std::move(is)) {} template InputStream(IStream_ &is) : is(is) {} template InputStream& operator>>(T& e) { if constexpr (suisen::is_readable_v) is >> e; else _read(e); return *this; } auto read() { return _reader; } template void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); } istream_type& get_stream() { return is; } private: static __uint128_t _stou128(const std::string& s) { __uint128_t ret = 0; for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0'; return ret; } static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); } void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); } void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); } template void _read(std::pair& a) { *this >> a.first >> a.second; } template void _read(std::tuple& a) { if constexpr (N < sizeof...(Args)) *this >> std::get(a), _read(a); } template , std::nullptr_t> = nullptr> void _read(Iterable& a) { for (auto& e : a) *this >> e; } }; template InputStream(IStream &&) -> InputStream; template InputStream(IStream &) -> InputStream; InputStream cin{ std::cin }; auto read() { return cin.read(); } template void read(Head& head, Tail &...tails) { cin.read(head, tails...); } } // namespace suisen::io namespace suisen { using io::read; } // namespace suisen namespace suisen::io { template >, std::negation>>>, std::nullptr_t> = nullptr> struct OutputStream { private: using ostream_type = std::remove_reference_t; OStream os; public: template OutputStream(OStream_ &&os) : os(std::move(os)) {} template OutputStream(OStream_ &os) : os(os) {} template OutputStream& operator<<(const T& e) { if constexpr (suisen::is_writable_v) os << e; else _print(e); return *this; } void print() { *this << '\n'; } template void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; } template , std::nullptr_t> = nullptr> void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") { for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep; *this << end; } ostream_type& get_stream() { return os; } private: void _print(__uint128_t value) { char buffer[41], *d = std::end(buffer); do *--d = '0' + (value % 10), value /= 10; while (value); os.rdbuf()->sputn(d, std::end(buffer) - d); } void _print(__int128_t value) { if (value < 0) *this << '-'; _print(__uint128_t(value < 0 ? -value : value)); } template void _print(const std::pair& a) { *this << a.first << ' ' << a.second; } template void _print(const std::tuple& a) { if constexpr (N < std::tuple_size_v>) { if constexpr (N) *this << ' '; *this << std::get(a), _print(a); } } template , std::nullptr_t> = nullptr> void _print(const Iterable& a) { print_all(a, " ", ""); } }; template OutputStream(OStream_ &&) -> OutputStream; template OutputStream(OStream_ &) -> OutputStream; OutputStream cout{ std::cout }, cerr{ std::cerr }; template void print(const Args &... args) { cout.print(args...); } template , std::nullptr_t> = nullptr> void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); } } // namespace suisen::io namespace suisen { using io::print, io::print_all; } // namespace suisen namespace suisen { template , std::enable_if_t, std::is_invocable_r, std::invoke_result_t>>, std::nullptr_t> = nullptr> auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) { return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); }; } template , std::nullptr_t> = nullptr> std::vector sorted_indices(int n, const Compare& compare) { std::vector p(n); return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p; } template , std::nullptr_t> = nullptr> std::vector sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator(to_key)); } template auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue, Comparator>{ comparator }; } template , std::nullptr_t> = nullptr> void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); } template struct Dim : std::array { template Dim(const Ints& ...ns) : std::array::array{ static_cast(ns)... } {} }; template Dim(const Ints& ...) -> Dim; template auto ndvec(const Dim &ns, const T& value = {}) { if constexpr (I + 1 < D) { return std::vector(ns[I], ndvec(ns, value)); } else { return std::vector(ns[I], value); } } } namespace suisen { using int128 = __int128_t; using uint128 = __uint128_t; template using min_priority_queue = std::priority_queue, std::greater>; template using max_priority_queue = std::priority_queue, std::less>; } namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; } #ifdef LOCAL # define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__) template void debug_impl(const char* s, const H& h, const Ts&... t) { suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n")); } #else # define debug(...) void(0) #endif #define FOR(e, v) for (auto &&e : v) #define CFOR(e, v) for (const auto &e : v) #define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__)) #define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__)) #define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__)) #define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n)) #define ALL(iterable) std::begin(iterable), std::end(iterable) using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; constexpr int iinf = std::numeric_limits::max() / 2; constexpr long long linf = std::numeric_limits::max() / 2; #include using mint = atcoder::modint998244353; namespace atcoder { std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } } // namespace atcoder #include #include #include namespace suisen { namespace default_operator { template auto zero() -> decltype(T { 0 }) { return T { 0 }; } template auto one() -> decltype(T { 1 }) { return T { 1 }; } template auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; } template auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; } template auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; } template auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; } template auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; } template auto neg(const T &x) -> decltype(-x) { return -x; } template auto inv(const T &x) -> decltype(one() / x) { return one() / x; } } // default_operator namespace default_operator_noref { template auto zero() -> decltype(T { 0 }) { return T { 0 }; } template auto one() -> decltype(T { 1 }) { return T { 1 }; } template auto add(T x, T y) -> decltype(x + y) { return x + y; } template auto sub(T x, T y) -> decltype(x - y) { return x - y; } template auto mul(T x, T y) -> decltype(x * y) { return x * y; } template auto div(T x, T y) -> decltype(x / y) { return x / y; } template auto mod(T x, T y) -> decltype(x % y) { return x % y; } template auto neg(T x) -> decltype(-x) { return -x; } template auto inv(T x) -> decltype(one() / x) { return one() / x; } } // default_operator } // namespace suisen namespace suisen { template < typename T, size_t N, size_t M, T(*_add)(T, T) = default_operator_noref::add, T(*_neg)(T) = default_operator_noref::neg, T(*_zero)() = default_operator_noref::zero, T(*_mul)(T, T) = default_operator_noref::mul, T(*_inv)(T) = default_operator_noref::inv, T(*_one)() = default_operator_noref::one > struct ArrayMatrix : public std::array, N> { private: template static constexpr bool is_square_v = N == M; template using MatrixType = ArrayMatrix; public: using base_type = std::array, N>; using container_type = base_type; using row_type = std::array; using base_type::base_type; ArrayMatrix(T diag_val = _zero()) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) { (*this)[i][j] = (i == j ? diag_val : _zero()); } } ArrayMatrix(const container_type& c) : base_type{ c } {} ArrayMatrix(const std::initializer_list& c) { assert(c.size() == N); size_t i = 0; for (const auto& row : c) { for (size_t j = 0; j < M; ++j) (*this)[i][j] = row[j]; ++i; } } static ArrayMatrix e0() { return ArrayMatrix(_zero()); } static MatrixType e1() { return MatrixType(_one()); } int size() const { static_assert(is_square_v<>); return N; } std::pair shape() const { return { N, M }; } int row_size() const { return N; } int col_size() const { return M; } ArrayMatrix operator+() const { return *this; } ArrayMatrix operator-() const { ArrayMatrix A; for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _neg((*this)[i][j]); return A; } friend ArrayMatrix& operator+=(ArrayMatrix& A, const ArrayMatrix& B) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _add(A[i][j], B[i][j]); return A; } friend ArrayMatrix& operator-=(ArrayMatrix& A, const ArrayMatrix& B) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _add(A[i][j], _neg(B[i][j])); return A; } template friend MatrixType& operator*=(ArrayMatrix& A, const MatrixType& B) { return A = A * B; } friend ArrayMatrix& operator*=(ArrayMatrix& A, const T& val) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _mul(A[i][j], val); return A; } friend ArrayMatrix& operator/=(ArrayMatrix& A, const ArrayMatrix& B) { static_assert(is_square_v<>); return A *= *B.inv(); } friend ArrayMatrix& operator/=(ArrayMatrix& A, const T& val) { return A *= _inv(val); } friend ArrayMatrix operator+(ArrayMatrix A, const ArrayMatrix& B) { A += B; return A; } friend ArrayMatrix operator-(ArrayMatrix A, const ArrayMatrix& B) { A -= B; return A; } template friend MatrixType operator*(const ArrayMatrix& A, const MatrixType& B) { MatrixType C; for (size_t i = 0; i < N; ++i) { C[i].fill(_zero()); for (size_t j = 0; j < M; ++j) for (size_t k = 0; k < K; ++k) C[i][k] = _add(C[i][k], _mul(A[i][j], B[j][k])); } return C; } friend ArrayMatrix operator*(ArrayMatrix A, const T& val) { A *= val; return A; } friend ArrayMatrix operator*(const T& val, ArrayMatrix A) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _mul(val, A[i][j]); return A; } friend std::array operator*(const ArrayMatrix& A, const std::array& x) { std::array b; b.fill(_zero()); for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) b[i] = _add(b[i], _mul(A[i][j], x[j])); return b; } friend ArrayMatrix operator/(ArrayMatrix A, const ArrayMatrix& B) { static_assert(is_square_v<>); return A * B.inv(); } friend ArrayMatrix operator/(ArrayMatrix A, const T& val) { A /= val; return A; } friend ArrayMatrix operator/(const T& val, ArrayMatrix A) { return A.inv() *= val; } ArrayMatrix pow(long long b) const { static_assert(is_square_v<>); assert(b >= 0); ArrayMatrix res(e1()), p(*this); for (; b; b >>= 1) { if (b & 1) res *= p; p *= p; } return res; } std::optional safe_inv() const { static_assert(is_square_v<>); std::array, N> data; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { data[i][j] = (*this)[i][j]; data[i][N + j] = i == j ? _one() : _zero(); } } for (size_t i = 0; i < N; ++i) { for (size_t k = i; k < N; ++k) if (data[k][i] != _zero()) { data[i].swap(data[k]); T c = _inv(data[i][i]); for (size_t j = i; j < 2 * N; ++j) data[i][j] = _mul(c, data[i][j]); break; } if (data[i][i] == _zero()) return std::nullopt; for (size_t k = 0; k < N; ++k) if (k != i and data[k][i] != _zero()) { T c = data[k][i]; for (size_t j = i; j < 2 * N; ++j) data[k][j] = _add(data[k][j], _neg(_mul(c, data[i][j]))); } } ArrayMatrix res; for (size_t i = 0; i < N; ++i) std::copy(data[i].begin() + N, data[i].begin() + 2 * N, res[i].begin()); return res; } ArrayMatrix inv() const { return *safe_inv(); } T det() const { static_assert(is_square_v<>); ArrayMatrix A = *this; bool sgn = false; for (size_t j = 0; j < N; ++j) for (size_t i = j + 1; i < N; ++i) if (A[i][j] != _zero()) { std::swap(A[j], A[i]); T q = _mul(A[i][j], _inv(A[j][j])); for (size_t k = j; k < N; ++k) A[i][k] = _add(A[i][k], _neg(_mul(A[j][k], q))); sgn = not sgn; } T res = sgn ? _neg(_one()) : _one(); for (size_t i = 0; i < N; ++i) res = _mul(res, A[i][i]); return res; } T det_arbitrary_mod() const { static_assert(is_square_v<>); ArrayMatrix A = *this; bool sgn = false; for (size_t j = 0; j < N; ++j) for (size_t i = j + 1; i < N; ++i) { for (; A[i][j].val(); sgn = not sgn) { std::swap(A[j], A[i]); T q = A[i][j].val() / A[j][j].val(); for (size_t k = j; k < N; ++k) A[i][k] -= A[j][k] * q; } } T res = sgn ? -1 : +1; for (size_t i = 0; i < N; ++i) res *= A[i][i]; return res; } }; template < typename T, size_t N, T(*_add)(T, T) = default_operator_noref::add, T(*_neg)(T) = default_operator_noref::neg, T(*_zero)() = default_operator_noref::zero, T(*_mul)(T, T) = default_operator_noref::mul, T(*_inv)(T) = default_operator_noref::inv, T(*_one)() = default_operator_noref::one > using SquareArrayMatrix = ArrayMatrix; } // namespace suisen using matrix = ArrayMatrix; matrix T[2]{ { { 1, 1, 0, 0, 0, 0 }, // S01 { 0, 1, 0, 0, 0, 0 }, // S1 { 0, 0, 1, 1, 1, 0 }, // S0 { 0, 0, 0, 1, 1, 0 }, // L { 0, 0, 0, 0, 1, 0 }, // 1 { 1, 1, 0, 0, 0, 1 }, // Ans }, { { 1, 0, 1, 0, 0, 0 }, // S01 { 0, 1, 0, 1, 1, 0 }, // S1 { 0, 0, 1, 0, 0, 0 }, // S0 { 0, 0, 0, 1, 1, 0 }, // L { 0, 0, 0, 0, 1, 0 }, // 1 { 1, 0, 1, 0, 0, 1 }, // Ans } }; matrix op(matrix A, matrix B) { return B * A; } matrix e() { return matrix::e1(); } #include void solve() { int n, q; read(n, q); string s; read(s); vector init(n); REP(i, n) { init[i] = T[s[i] - '0']; } atcoder::segtree seg(init); while (q--) { int t; read(t); if (t == 1) { int i; read(i); --i; s[i] ^= 1; seg.set(i, T[s[i] - '0']); } else { int l, r; read(l, r); --l; mint ans = (seg.prod(l, r) * array{ 0, 0, 0, 0, 1, 0 })[5]; print(ans); } } } int main() { int test_case_num = 1; // read(test_case_num); LOOP(test_case_num) solve(); return 0; }