#include namespace suisen { template bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } template bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template constexpr int pow_m1(T n) { return -(n & 1) | 1; } template constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); } template constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); } } namespace suisen::macro { #define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() { return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; } template == std::is_signed_v), std::nullptr_t> = nullptr> struct rep_impl { Int _val; const Int _end, _step; rep_impl(Int n) : rep_impl(0, n) {} rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {} IMPL_REPITER((_val < _end)) }; template == std::is_signed_v), std::nullptr_t> = nullptr> struct rrep_impl { Int _val; const Int _end, _step; rrep_impl(Int n) : rrep_impl(0, n) {} rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {} rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld(r - l - 1, step) * step), _end(l), _step(-step) {} IMPL_REPITER((_val >= _end)) }; template struct repinf_impl { Int _val; const Int _step; repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {} IMPL_REPITER((true)) }; #undef IMPL_REPITER } #include #include #include namespace suisen { template using constraints_t = std::enable_if_t, std::nullptr_t>; template struct bitnum { static constexpr int value = 0; }; template struct bitnum>> { static constexpr int value = std::numeric_limits>::digits; }; template static constexpr int bitnum_v = bitnum::value; template struct is_nbit { static constexpr bool value = bitnum_v == n; }; template static constexpr bool is_nbit_v = is_nbit::value; template struct safely_multipliable { using type = T; }; template struct safely_multipliable, is_nbit>> { using type = long long; }; template struct safely_multipliable, is_nbit>> { using type = __int128_t; }; template struct safely_multipliable, is_nbit>> { using type = unsigned long long; }; template struct safely_multipliable, is_nbit>> { using type = __uint128_t; }; template using safely_multipliable_t = typename safely_multipliable::type; template struct rec_value_type { using type = T; }; template struct rec_value_type> { using type = typename rec_value_type::type; }; template using rec_value_type_t = typename rec_value_type::type; template class is_iterable { template static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_iterable_v = is_iterable::value; template class is_writable { template static auto test(T_ e) -> decltype(std::declval() << e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_writable_v = is_writable::value; template class is_readable { template static auto test(T_ e) -> decltype(std::declval() >> e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval()))::value; }; template static constexpr bool is_readable_v = is_readable::value; } // namespace suisen namespace suisen::io { template >, std::negation>>>, std::nullptr_t> = nullptr> struct InputStream { private: using istream_type = std::remove_reference_t; IStream is; struct { InputStream* is; template operator T() { T e; *is >> e; return e; } } _reader{ this }; public: template InputStream(IStream_ &&is) : is(std::move(is)) {} template InputStream(IStream_ &is) : is(is) {} template InputStream& operator>>(T& e) { if constexpr (suisen::is_readable_v) is >> e; else _read(e); return *this; } auto read() { return _reader; } template void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); } istream_type& get_stream() { return is; } private: static __uint128_t _stou128(const std::string& s) { __uint128_t ret = 0; for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0'; return ret; } static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); } void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); } void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); } template void _read(std::pair& a) { *this >> a.first >> a.second; } template void _read(std::tuple& a) { if constexpr (N < sizeof...(Args)) *this >> std::get(a), _read(a); } template , std::nullptr_t> = nullptr> void _read(Iterable& a) { for (auto& e : a) *this >> e; } }; template InputStream(IStream &&) -> InputStream; template InputStream(IStream &) -> InputStream; InputStream cin{ std::cin }; auto read() { return cin.read(); } template void read(Head& head, Tail &...tails) { cin.read(head, tails...); } } // namespace suisen::io namespace suisen { using io::read; } // namespace suisen namespace suisen::io { template >, std::negation>>>, std::nullptr_t> = nullptr> struct OutputStream { private: using ostream_type = std::remove_reference_t; OStream os; public: template OutputStream(OStream_ &&os) : os(std::move(os)) {} template OutputStream(OStream_ &os) : os(os) {} template OutputStream& operator<<(const T& e) { if constexpr (suisen::is_writable_v) os << e; else _print(e); return *this; } void print() { *this << '\n'; } template void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; } template , std::nullptr_t> = nullptr> void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") { for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep; *this << end; } ostream_type& get_stream() { return os; } private: void _print(__uint128_t value) { char buffer[41], *d = std::end(buffer); do *--d = '0' + (value % 10), value /= 10; while (value); os.rdbuf()->sputn(d, std::end(buffer) - d); } void _print(__int128_t value) { if (value < 0) *this << '-'; _print(__uint128_t(value < 0 ? -value : value)); } template void _print(const std::pair& a) { *this << a.first << ' ' << a.second; } template void _print(const std::tuple& a) { if constexpr (N < std::tuple_size_v>) { if constexpr (N) *this << ' '; *this << std::get(a), _print(a); } } template , std::nullptr_t> = nullptr> void _print(const Iterable& a) { print_all(a, " ", ""); } }; template OutputStream(OStream_ &&) -> OutputStream; template OutputStream(OStream_ &) -> OutputStream; OutputStream cout{ std::cout }, cerr{ std::cerr }; template void print(const Args &... args) { cout.print(args...); } template , std::nullptr_t> = nullptr> void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); } } // namespace suisen::io namespace suisen { using io::print, io::print_all; } // namespace suisen namespace suisen { template , std::enable_if_t, std::is_invocable_r, std::invoke_result_t>>, std::nullptr_t> = nullptr> auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) { return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); }; } template , std::nullptr_t> = nullptr> std::vector sorted_indices(int n, const Compare& compare) { std::vector p(n); return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p; } template , std::nullptr_t> = nullptr> std::vector sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator(to_key)); } template auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue, Comparator>{ comparator }; } template , std::nullptr_t> = nullptr> void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); } template struct Dim : std::array { template Dim(const Ints& ...ns) : std::array::array{ static_cast(ns)... } {} }; template Dim(const Ints& ...) -> Dim; template auto ndvec(const Dim &ns, const T& value = {}) { if constexpr (I + 1 < D) { return std::vector(ns[I], ndvec(ns, value)); } else { return std::vector(ns[I], value); } } } namespace suisen { using int128 = __int128_t; using uint128 = __uint128_t; template using min_priority_queue = std::priority_queue, std::greater>; template using max_priority_queue = std::priority_queue, std::less>; } namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; } #ifdef LOCAL # define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__) template void debug_impl(const char* s, const H& h, const Ts&... t) { suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n")); } #else # define debug(...) void(0) #endif #define FOR(e, v) for (auto &&e : v) #define CFOR(e, v) for (const auto &e : v) #define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__)) #define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__)) #define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__)) #define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n)) #define ALL(iterable) std::begin(iterable), std::end(iterable) using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; constexpr int iinf = std::numeric_limits::max() / 2; constexpr long long linf = std::numeric_limits::max() / 2; #include #include #include #include #include #include #include #include #include #include #include namespace suisen { namespace internal::montgomery { template struct Montgomery { private: static constexpr uint32_t bits = std::numeric_limits::digits; static constexpr Int mask = ~Int(0); // R = 2**32 or 2**64 // 1. N is an odd number // 2. N < R // 3. gcd(N, R) = 1 // 4. R * R2 - N * N2 = 1 // 5. 0 < R2 < N // 6. 0 < N2 < R Int N, N2, R2; // RR = R * R (mod N) Int RR; public: constexpr Montgomery() = default; explicit constexpr Montgomery(Int N) : N(N), N2(calcN2(N)), R2(calcR2(N, N2)), RR(calcRR(N)) { assert(N & 1); } // @returns t * R (mod N) constexpr Int make(Int t) const { return reduce(static_cast(t) * RR); } // @returns T * R^(-1) (mod N) constexpr Int reduce(DInt T) const { // 0 <= T < RN // Note: // 1. m = T * N2 (mod R) // 2. 0 <= m < R DInt m = modR(static_cast(modR(T)) * N2); // Note: // T + m * N = T + T * N * N2 = T + T * (R * R2 - 1) = 0 (mod R) // => (T + m * N) / R is an integer. // => t * R = T + m * N = T (mod N) // => t = T R^(-1) (mod N) DInt t = divR(T + m * N); // Note: // 1. 0 <= T < RN // 2. 0 <= mN < RN (because 0 <= m < R) // => 0 <= T + mN < 2RN // => 0 <= t < 2N return t >= N ? t - N : t; } constexpr Int add(Int A, Int B) const { return (A += B) >= N ? A - N : A; } constexpr Int sub(Int A, Int B) const { return (A -= B) < 0 ? A + N : A; } constexpr Int mul(Int A, Int B) const { return reduce(static_cast(A) * B); } constexpr Int div(Int A, Int B) const { return reduce(static_cast(A) * inv(B)); } constexpr Int inv(Int A) const; // TODO: Implement constexpr Int pow(Int A, long long b) const { Int P = make(1); for (; b; b >>= 1) { if (b & 1) P = mul(P, A); A = mul(A, A); } return P; } private: static constexpr Int divR(DInt t) { return t >> bits; } static constexpr Int modR(DInt t) { return t & mask; } static constexpr Int calcN2(Int N) { // - N * N2 = 1 (mod R) // N2 = -N^{-1} (mod R) // calculates N^{-1} (mod R) by Newton's method DInt invN = N; // = N^{-1} (mod 2^2) for (uint32_t cur_bits = 2; cur_bits < bits; cur_bits *= 2) { // loop invariant: invN = N^{-1} (mod 2^cur_bits) // x = a^{-1} mod m => x(2-ax) = a^{-1} mod m^2 because: // ax = 1 (mod m) // => (ax-1)^2 = 0 (mod m^2) // => 2ax - a^2x^2 = 1 (mod m^2) // => a(x(2-ax)) = 1 (mod m^2) invN = modR(invN * modR(2 - N * invN)); } assert(modR(N * invN) == 1); return modR(-invN); } static constexpr Int calcR2(Int N, Int N2) { // R * R2 - N * N2 = 1 // => R2 = (1 + N * N2) / R return divR(1 + static_cast(N) * N2); } static constexpr Int calcRR(Int N) { return -DInt(N) % N; } }; } // namespace internal::montgomery using Montgomery32 = internal::montgomery::Montgomery; using Montgomery64 = internal::montgomery::Montgomery; } // namespace suisen namespace suisen::miller_rabin { namespace internal { constexpr uint64_t THRESHOLD_1 = 341531ULL; constexpr uint64_t BASE_1[]{ 9345883071009581737ULL }; constexpr uint64_t THRESHOLD_2 = 1050535501ULL; constexpr uint64_t BASE_2[]{ 336781006125ULL, 9639812373923155ULL }; constexpr uint64_t THRESHOLD_3 = 350269456337ULL; constexpr uint64_t BASE_3[]{ 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL }; constexpr uint64_t THRESHOLD_4 = 55245642489451ULL; constexpr uint64_t BASE_4[]{ 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL }; constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL; constexpr uint64_t BASE_5[]{ 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL }; constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL; constexpr uint64_t BASE_6[]{ 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL, 1263739024124850375ULL }; constexpr uint64_t BASE_7[]{ 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U }; template constexpr bool miller_rabin(uint64_t n) { if (n == 2 or n == 3 or n == 5 or n == 7) return true; if (n <= 1 or n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false; if (n < 121) return true; const uint32_t s = __builtin_ctzll(n - 1); // >= 1 const uint64_t d = (n - 1) >> s; const Montgomery64 mg{ n }; const uint64_t one = mg.make(1), minus_one = mg.make(n - 1); for (std::size_t i = 0; i < SIZE; ++i) { uint64_t a = BASE[i] % n; if (a == 0) continue; uint64_t Y = mg.pow(mg.make(a), d); if (Y == one) continue; for (uint32_t r = 0;; ++r, Y = mg.mul(Y, Y)) { // Y = a^(d 2^r) if (Y == minus_one) break; if (r == s - 1) return false; } } return true; } } template , std::nullptr_t> = nullptr> constexpr bool is_prime(T n) { if constexpr (std::is_signed_v) { assert(n >= 0); } const std::make_unsigned_t n_unsigned = n; assert(n_unsigned <= std::numeric_limits::max()); // n < 2^64 using namespace internal; if (n_unsigned < THRESHOLD_1) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_2) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_3) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_4) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_5) return miller_rabin(n_unsigned); if (n_unsigned < THRESHOLD_6) return miller_rabin(n_unsigned); return miller_rabin(n_unsigned); } } // namespace suisen::miller_rabin #include namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template std::uint8_t SimpleSieve::flag[SimpleSieve::siz]; template class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template unsigned int Sieve::pf[Sieve::base_max + internal::sieve::K]; } // namespace suisen namespace suisen::fast_factorize { namespace internal { template constexpr int floor_log2(T n) { int i = 0; while (n) n >>= 1, ++i; return i - 1; } template , std::nullptr_t> = nullptr> T pollard_rho(const T n) { using M = safely_multipliable_t; const T m = T(1) << (floor_log2(n) / 5); static std::mt19937_64 rng{std::random_device{}()}; std::uniform_int_distribution dist(0, n - 1); // const Montgomery64 mg{n}; while (true) { T c = dist(rng); auto f = [&](T x) -> T { return (M(x) * x + c) % n; }; T x, y = 2, ys, q = 1, g = 1; for (T r = 1; g == 1; r <<= 1) { x = y; for (T i = 0; i < r; ++i) y = f(y); for (T k = 0; k < r and g == 1; k += m) { ys = y; for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n; g = std::gcd(q, n); } } if (g == n) { g = 1; while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n); } if (g < n) { if (miller_rabin::is_prime(g)) return g; if (T d = n / g; miller_rabin::is_prime(d)) return d; return pollard_rho(g); } } } } template , std::nullptr_t> = nullptr> std::vector> factorize(T n) { static constexpr int threshold = 1000000; static Sieve sieve; std::vector> res; if (n <= threshold) { for (auto [p, q] : sieve.factorize(n)) res.emplace_back(p, q); return res; } if ((n & 1) == 0) { int q = 0; do ++q, n >>= 1; while ((n & 1) == 0); res.emplace_back(2, q); } for (T p = 3; p * p <= n; p += 2) { if (p >= 101 and n >= 1 << 20) { while (n > 1) { if (miller_rabin::is_prime(n)) { res.emplace_back(std::exchange(n, 1), 1); } else { p = internal::pollard_rho(n); int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } break; } if (n % p == 0) { int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } if (n > 1) res.emplace_back(n, 1); return res; } } // namespace suisen::fast_factorize namespace suisen { namespace internal::order_prime_mod { template struct mint64 { static uint64_t mod() { return _mod; } static void set_mod(uint64_t new_mod) { mint64::_mod = new_mod; } mint64() : _val(0) {} mint64(long long val) : _val(safe_mod(val)) {} uint64_t val() { return _val; } friend mint64& operator*=(mint64& x, const mint64& y) { x._val = __uint128_t(x._val) * y._val % _mod; return x; } friend mint64 operator*(mint64 x, const mint64& y) { x *= y; return x; } mint64 pow(long long b) const { assert(b >= 0); mint64 p = *this, res = 1; for (; b; b >>= 1) { if (b & 1) res *= p; p *= p; } return res; } private: static inline uint64_t _mod; uint64_t _val; static uint64_t safe_mod(long long val) { return (val %= _mod) < 0 ? val + _mod : val; } }; } template , std::nullptr_t> = nullptr> struct OrderMod { using U = std::make_unsigned_t; OrderMod() = default; OrderMod(T m) : _mod(m) { auto factorized = fast_factorize::factorize(_mod); _is_prime = factorized.size() == 1; _lambda = _carmichael(factorized); _phi = _totient(factorized); for (auto [p, q] : fast_factorize::factorize(_lambda)) { U r = 1; for (int i = 0; i < q; ++i) r *= p; _fac_lambda.emplace_back(p, q, r); } } bool is_primitive_root(U a) const { if (_mod < 1ULL << 32) { using mint = atcoder::dynamic_modint<1000000000>; U old_mod = mint::mod(); mint::set_mod(_mod); bool res = _is_primitive_root_impl(a); mint::set_mod(old_mod); return res; } else { using mint = internal::order_prime_mod::mint64<1000000000>; U old_mod = mint::mod(); mint::set_mod(_mod); bool res = _is_primitive_root_impl(a); mint::set_mod(old_mod); return res; } } T primitive_root() const { assert(_lambda == _phi); if (_mod < 1ULL << 32) { return _primitive_root_impl(); } else { return _primitive_root_impl(); } } T operator()(U a) const { if (_mod < 1ULL << 31) { using mint = atcoder::dynamic_modint<1000000000>; U old_mod = mint::mod(); mint::set_mod(_mod); T res = _order_impl(a); mint::set_mod(old_mod); return res; } else { using mint = internal::order_prime_mod::mint64<1000000000>; U old_mod = mint::mod(); mint::set_mod(_mod); T res = _order_impl(a); mint::set_mod(old_mod); return res; } } T mod() const { return _mod; } T totient() const { return _phi; } T carmichael() const { return _lambda; } bool is_prime() const { return _is_prime; } std::vector carmichael_prime_factors() const { std::vector res; for (const auto &e : _fac_lambda) res.push_back(std::get<0>(e)); return res; } private: U _mod; U _phi; U _lambda; bool _is_prime; std::vector> _fac_lambda; static T _carmichael(const std::vector>& factorized) { T lambda = 1; for (auto [p, ep] : factorized) { T phi = p - 1; int exponent = ep - (1 + (p == 2 and ep >= 3)); for (int i = 0; i < exponent; ++i) phi *= p; lambda = std::lcm(lambda, phi); } return lambda; } static T _totient(const std::vector>& factorized) { T t = 1; for (const auto& [p, ep] : factorized) { t *= p - 1; for (int i = 0; i < ep - 1; ++i) t *= p; } return t; } template bool _is_primitive_root_impl(U a) const { if (_lambda != _phi) return false; if (_mod == 2) return a % 2 == 1; const int k = _fac_lambda.size(); U x = _lambda; for (const auto& [p, q, pq] : _fac_lambda) x /= p; mint b = mint(a).pow(x); if (k == 1) return b.val() != 1; auto dfs = [&](auto dfs, const int l, const int r, const mint val) -> bool { const int m = (l + r) >> 1; U lp = 1; for (int i = m; i < r; ++i) lp *= std::get<0>(_fac_lambda[i]); mint lval = val.pow(lp); if (m - l == 1) { if (lval.val() == 1) return false; } else { if (not dfs(dfs, l, m, lval)) return false; } U rp = 1; for (int i = l; i < m; ++i) rp *= std::get<0>(_fac_lambda[i]); mint rval = val.pow(rp); if (r - m == 1) { if (rval.val() == 1) return false; } else { if (not dfs(dfs, m, r, rval)) return false; } return true; }; return dfs(dfs, 0, k, b); } template T _primitive_root_impl() const { if (_mod == 2) return 1; Rng rng{ std::random_device{}() }; while (true) { U a = rng() % (_mod - 2) + 2; while (not _is_prime and std::gcd(a, _mod) != 1) { a = rng() % (_mod - 2) + 2; } if (is_primitive_root(a)) return a; } } template U _order_impl(U a) const { if (_mod == 2) return a % 2 == 1; const int k = _fac_lambda.size(); U res = 1; auto update = [&](U p, mint val) { while (val.val() != 1) { val = val.pow(p); res *= p; } }; if (k == 1) { update(std::get<0>(_fac_lambda.front()), a); return res; } auto dfs = [&](auto dfs, const int l, const int r, const mint val) -> void { const int m = (l + r) >> 1; U lp = 1; for (int i = m; i < r; ++i) lp *= std::get<2>(_fac_lambda[i]); mint lval = val.pow(lp); if (m - l == 1) { update(std::get<0>(_fac_lambda[l]), lval); } else { dfs(dfs, l, m, lval); } U rp = 1; for (int i = l; i < m; ++i) rp *= std::get<2>(_fac_lambda[i]); mint rval = val.pow(rp); if (r - m == 1) { update(std::get<0>(_fac_lambda[m]), rval); } else { dfs(dfs, m, r, rval); } }; dfs(dfs, 0, k, a); return res; } }; } // namespace suisen namespace suisen { template , std::nullptr_t> = nullptr> T primitive_root(T p) { return OrderMod{p}.primitive_root(); } } // namespace suisen #include #include #include void solve() { long long n; int p; read(n, p); using mint_expo = atcoder::modint; mint_expo::set_mod(p - 1); const int g = primitive_root(p); vector pg(p - 1), idx(p, -1); { int pow_g = 1; REP(i, p - 1) { pg[i] = pow_g; idx[pg[i]] = i; pow_g = (long long) pow_g * g % p; } } vector fac(p), ifac(p); fac[0] = idx[1]; REP(i, 1, p) fac[i] = fac[i - 1] + idx[i]; ifac[p - 1] = idx[atcoder::inv_mod(pg[fac[p - 1].val()], p)]; RREP(i, 1, p) ifac[i - 1] = ifac[i] + idx[i]; vector dn; for (long long x = n; x; x /= p) { dn.push_back(x % p); } const int k = dn.size(); // auto binom = [&](long long r) -> int { // mintp res = 1; // for (int i = 0; i < k; ++i) { // int dr = r % p; // if (dn[i] < dr) return 0; // res *= fac[dn[i]] * ifac[dr] * ifac[dn[i] - dr]; // r /= p; // } // return res.val(); // }; using mint998 = atcoder::modint998244353; vector pd(p - 1); pd[idx[1]] = 1; REP(i, k) { vector g(p - 1); REP(r, dn[i] + 1) { ++g[(fac[dn[i]] + ifac[r] + ifac[dn[i] - r]).val()]; } vector f = atcoder::convolution(pd, g); vector dp(p - 1); REP(expo, f.size()) { dp[mint_expo(expo).val()] += f[expo]; // REP(r, dn[i] + 1) { // int nxt_expo = (expo + fac[dn[i]] + ifac[r] + ifac[dn[i] - r]).val(); // dp[nxt_expo] += pd[expo]; // } } pd.swap(dp); } mint998 ans = 0; REP(expo, p - 1) ans += pd[expo] * pg[expo]; print(ans.val()); } int main() { int test_case_num = 1; // read(test_case_num); LOOP(test_case_num) solve(); return 0; }