// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] // use core::num; use std::cmp::*; use std::fmt::*; use std::hash::*; use std::iter::FromIterator; use std::*; use std::{cmp, collections, fmt, io, iter, ops, str}; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const LINF: i64 = 2147483647; const INF128: i128 = 1223372036854775807000000000000; const MOD1: i64 = 1000000007; const MOD9: i64 = 998244353; const MOD: i64 = MOD9; // const MOD: i64 = MOD2; const UMOD: usize = MOD as usize; const M_PI: f64 = 3.14159265358979323846; // use proconio::input; // const MOD: i64 = INF; use cmp::Ordering::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { //if expr println!("{}", $x); }; } macro_rules! vp { // vector print separate with space ($x:expr) => { println!( "{}", $x.iter() .map(|x| x.to_string()) .collect::>() .join(" ") ); }; } macro_rules! d { ($x:expr) => { eprintln!("{:?}", $x); }; } macro_rules! yn { ($val:expr) => { if $val { println!("Yes"); } else { println!("No"); } }; } macro_rules! map{ // declear btreemap ($($key:expr => $val:expr),*) => { { let mut map = ::std::collections::BTreeMap::new(); $( map.insert($key, $val); )* map } }; } macro_rules! set{ // declear btreemap ($($key:expr),*) => { { let mut set = ::std::collections::BTreeSet::new(); $( set.insert($key); )* set } }; } fn main() { solve(); } // use str::Chars; #[allow(dead_code)] fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } #[allow(dead_code)] fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_mat(n: u32) -> Vec> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readff() -> (f64, f64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readcc() -> (char, char) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readuuu() -> (usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readiiii() -> (i64, i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } #[allow(dead_code)] fn readuuuu() -> (usize, usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } fn read_imat(h: usize) -> Vec> { (0..h).map(|_| read_vec()).collect() } fn read_cmat(h: usize) -> Vec> { (0..h).map(|_| read::().chars().collect()).collect() } fn dijkstra(graph: &Vec>, start: usize) -> Vec { let mut dist = vec![INF as usize; graph.len()]; let mut heap = BinaryHeap::new(); heap.push(Reverse((0 as usize, start))); dist[start] = 0; while let Some(Reverse(x)) = heap.pop() { let cost = x.0; let v = x.1; if cost > dist[v] { continue; } for edge in &graph[v] { let nc = cost + edge.1; let nv = edge.0; if nc < dist[nv] { heap.push(Reverse((nc, nv))); dist[nv] = nc; } } } return dist; } fn solve() { let (h, w, n) = readuuu(); let mut node = set![]; node.insert((0, 0)); node.insert((h as i64 - 1, w as i64 - 1)); let mut data = vec![]; for i in 0..n { let (a, b, c, d) = readiiii(); data.push((a - 1, b - 1, c - 1, d - 1)); node.insert((a - 1, b - 1)); node.insert((c - 1, d - 1)); } let node_num = node.len(); let mut node_to_idx = map![]; let mut idx_to_node = vec![]; let mut src_idx = 0; let mut dst_idx = 0; for (i, &x) in node.iter().enumerate() { node_to_idx.insert(x, i); idx_to_node.push(x); if x == (0, 0) { src_idx = i; } if x == (h as i64 - 1, w as i64 - 1) { dst_idx = i; } } let mut graph = vec![vec![(0 as usize, 0 as usize); (0) as usize]; (node_num) as usize]; for i in 0..data.len() { let (a, b, c, d) = data[i]; let i1 = node_to_idx[&(a, b)]; let i2 = node_to_idx[&(c, d)]; // let dist = ((a as i64 - c as i64).abs() + (b as i64 - d as i64).abs()) as usize; graph[i1].push((i2, 1)); } for i in 0..node_num { for j in 0..node_num { let (a, b) = idx_to_node[i]; let (c, d) = idx_to_node[j]; let dist = ((a as i64 - c as i64).abs() + (b as i64 - d as i64).abs()) as usize; graph[i].push((j, dist)); } } let dist = dijkstra(&graph, src_idx); p!(dist[dst_idx]); return; }