import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2]) # {.checks: off.} ImportExpand "cplib/tmpl/citrus.nim" <=== "when not declared CPLIB_TMPL_CITRUS:\n const CPLIB_TMPL_CITRUS* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import os\n import algorithm\n import sequtils\n import tables\n import macros\n import std/math\n import sets\n import strutils\n import strformat\n import sugar\n import streams\n import deques\n import bitops\n import heapqueue\n import options\n import hashes\n const MODINT998244353* = 998244353\n const MODINT1000000007* = 1000000007\n #[ include cplib/utils/infl ]#\n when not declared CPLIB_UTILS_INFL:\n const CPLIB_UTILS_INFL* = 1\n const INFi32* = 100100111.int32\n const INFL* = int(3300300300300300491)\n type double* = float64\n let readNext = iterator(getsChar: bool = false): string {.closure.} =\n while true:\n var si: string\n try: si = stdin.readLine\n except EOFError: yield \"\"\n for s in si.split:\n if getsChar:\n for i in 0.. 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x: SomeInteger, y: SomeInteger): int =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y < x: result -= 1\n proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n proc `<<`*(x: SomeInteger, y: SomeInteger): int = x shl y\n proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n proc `//=`*(x: var SomeInteger, y: SomeInteger): void = x = x // y\n proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n proc `&=`*(x: var SomeInteger, y: SomeInteger): void = x = x & y\n proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n proc `>>=`*(x: var SomeInteger, y: SomeInteger): void = x = x >> y\n proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n proc `[]`*(x, n: int): bool = (x and (1 shl n)) != 0\n proc `[]=`*(x: var int, n: int, i: bool) =\n if i: x = x or (1 << n)\n else: (if x[n]: x = x xor (1 << n))\n proc pow*(a, n: int, m = INFL): int =\n var\n rev = 1\n a = a\n n = n\n while n > 0:\n if n % 2 != 0: rev = (rev * a) mod m\n if n > 1: a = (a * a) mod m\n n >>= 1\n return rev\n #[ include cplib/math/isqrt ]#\n when not declared CPLIB_MATH_ISQRT:\n const CPLIB_MATH_ISQRT* = 1\n proc isqrt*(n: int): int =\n var x = n\n var y = (x + 1) shr 1\n while y < x:\n x = y\n y = (x + n div x) shr 1\n return x\n proc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n proc chmin*[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n proc at*(x: char, a = '0'): int = int(x) - int(a)\n proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n proc No*(b: bool = true): void = Yes(not b)\n proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n macro exit*(statement: untyped): untyped = (quote do: (`statement`; quit()))\n proc initHashSet[T](): Hashset[T] = initHashSet[T](0)\n" ImportExpand "cplib/collections/tatyamset.nim" <=== "# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py\nwhen not declared CPLIB_COLLECTIONS_TATYAMSET:\n import algorithm\n import math\n import sequtils\n import sugar\n import options\n const CPLIB_COLLECTIONS_TATYAMSET* = 1\n\n const BUCKET_RATIO = 8\n const SPLIT_RATIO = 12\n type SortedMultiSet*[T] = ref object\n size: int\n arr*: seq[seq[T]]\n proc initSortedMultiset*[T](v: seq[T] = @[]): SortedMultiSet[T] =\n #Make a new SortedMultiset from seq. / O(N) if sorted / O(N log N)\n var v = v\n if not isSorted(v):\n v.sort()\n var n = len(v)\n var bucket_size = int(ceil(sqrt(n/BUCKET_RATIO)))\n var arr = collect(newseq): (for i in 0.. Iterator[T]:\n # for i in reversed(self.a):\n # for j in reversed(i): yield j\n\n # def __eq__(self, other) -> bool:\n # return list(self) == list(other)\n\n proc len*(self: SortedMultiSet): int =\n return self.size\n\n # def __repr__(self) -> str:\n # return \"SortedMultiset\" + str(self.a)\n\n # proc `$`*(self:SortedMultiSet):string=\n # var s = $(toseq(self))\n # return \"{\" & s[1 : len(s) - 1] & \"}\"\n\n proc position[T](self: SortedMultiSet[T], x: T): (int, int) =\n #\"return the bucket, index of the bucket and position in which x should be. self must not be empty.\"\n for i, a in self.arr:\n if x <= a[^1]:\n return (i, a.lowerBound(x))\n return (len(self.arr)-1, self.arr[^1].lowerBound(x))\n\n proc contains*[T](self: SortedMultiSet[T], x: T): bool =\n if self.size == 0: return false\n var (i, j) = self.position(x)\n return j != len(self.arr[i]) and self.arr[i][j] == x\n\n proc incl*[T](self: SortedMultiSet[T], x: T) =\n #\"Add an element. / O(√N)\"\n if self.size == 0:\n self.arr = @[@[x]]\n self.size = 1\n return\n var (b, i) = self.position(x)\n self.arr[b].insert(x, i)\n self.size += 1\n if len(self.arr[b]) > len(self.arr) * SPLIT_RATIO:\n var mid = len(self.arr[b]) shr 1\n self.arr.insert(self.arr[b][mid.. x, or None if it doesn't exist.\"\n for i in 0.. x:\n return some(self.arr[i][upperBound(self.arr[i], x)])\n return none(T)\n\n proc ge*[T](self: SortedMultiSet[T], x: T): Option[T] =\n #\"Find the smallest element >= x, or None if it doesn't exist.\"\n for i in 0..= x:\n return some(self.arr[i][lowerBound(self.arr[i], x)])\n return none(T)\n\n proc `[]`*[T](self: SortedMultiSet[T], i: int): T =\n var i = i\n #\"Return the i-th element.\"\n if i < 0:\n for j in countdown(len(self.arr)-1, 0, 1):\n i += len(self.arr[j])\n if i >= 0: return self.arr[j][i]\n else:\n for j in 0..= 0: return self.innerpop(not b, i)\n else:\n for b in 0..= x:\n return result + lowerBound(self.arr[i], x)\n result += len(self.arr[i])\n\n proc index_right*[T](self: SortedMultiSet[T], x: T): int =\n #\"Count the number of elements <= x.\"\n for i in 0.. x:\n return result + upperBound(self.arr[i], x)\n result += len(self.arr[i])\n proc count*[T](self: SortedMultiSet[T], x: T): int =\n #\"Count the number of x.\"\n return self.index_right(x) - self.index(x)\n\n iterator items*[T](self: SortedMultiSet[T]): T =\n for i in 0..