#include #define rep(i, a, b) for (ll i = (ll)(a); i < (ll)(b); i++) using namespace std; typedef long long ll; namespace FastPrimeFactorization { template struct UnsafeMod { UnsafeMod() : x(0) {} UnsafeMod(word _x) : x(init(_x)) {} bool operator==(const UnsafeMod &rhs) const { return x == rhs.x; } bool operator!=(const UnsafeMod &rhs) const { return x != rhs.x; } UnsafeMod &operator+=(const UnsafeMod &rhs) { if ((x += rhs.x) >= mod) x -= mod; return *this; } UnsafeMod &operator-=(const UnsafeMod &rhs) { if (sword(x -= rhs.x) < 0) x += mod; return *this; } UnsafeMod &operator*=(const UnsafeMod &rhs) { x = reduce(dword(x) * rhs.x); return *this; } UnsafeMod operator+(const UnsafeMod &rhs) const { return UnsafeMod(*this) += rhs; } UnsafeMod operator-(const UnsafeMod &rhs) const { return UnsafeMod(*this) -= rhs; } UnsafeMod operator*(const UnsafeMod &rhs) const { return UnsafeMod(*this) *= rhs; } UnsafeMod pow(uint64_t e) const { UnsafeMod ret(1); for (UnsafeMod base = *this; e; e >>= 1, base *= base) { if (e & 1) ret *= base; } return ret; } word get() const { return reduce(x); } static constexpr int word_bits = sizeof(word) * 8; static word modulus() { return mod; } static word init(word w) { return reduce(dword(w) * r2); } static void set_mod(word m) { mod = m; inv = mul_inv(mod); r2 = -dword(mod) % mod; } static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; } static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); } static word mod, inv, r2; word x; }; using uint128_t = __uint128_t; using Mod64 = UnsafeMod; template <> uint64_t Mod64::mod = 0; template <> uint64_t Mod64::inv = 0; template <> uint64_t Mod64::r2 = 0; using Mod32 = UnsafeMod; template <> uint32_t Mod32::mod = 0; template <> uint32_t Mod32::inv = 0; template <> uint32_t Mod32::r2 = 0; bool miller_rabin_primality_test_uint64(uint64_t n) { Mod64::set_mod(n); uint64_t d = n - 1; while (d % 2 == 0) d /= 2; Mod64 e{1}, rev{n - 1}; // http://miller-rabin.appspot.com/ < 2^64 for (uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (n <= a) break; uint64_t t = d; Mod64 y = Mod64(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_primality_test_uint32(uint32_t n) { Mod32::set_mod(n); uint32_t d = n - 1; while (d % 2 == 0) d /= 2; Mod32 e{1}, rev{n - 1}; for (uint32_t a : {2, 7, 61}) { if (n <= a) break; uint32_t t = d; Mod32 y = Mod32(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(uint64_t n) { if (n == 2) return true; if (n == 1 || n % 2 == 0) return false; if (n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n); return miller_rabin_primality_test_uint64(n); } uint64_t pollard_rho(uint64_t n) { if (is_prime(n)) return n; if (n % 2 == 0) return 2; Mod64::set_mod(n); uint64_t d; Mod64 one{1}; for (Mod64 c{one};; c += one) { Mod64 x{2}, y{2}; do { x = x * x + c; y = y * y + c; y = y * y + c; d = __gcd((x - y).get(), n); } while (d == 1); if (d < n) return d; } assert(0); } vector prime_factor(uint64_t n) { if (n <= 1) return {}; uint64_t p = pollard_rho(n); if (p == n) return {p}; auto l = prime_factor(p); auto r = prime_factor(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } }; // namespace FastPrimeFactorization // auto p = FastPrimeFactorization::prime_factor(n); int main() { ll n; cin >> n; auto p = FastPrimeFactorization::prime_factor(n); map ma; for (auto x : p) { ma[x]++; } int gr = 0; for (auto x : ma) { gr ^= x.second; } cout << (gr ? "Alice" : "Bob") << endl; }