def main(): N=II() nume=[-1]+[pow(i,-1,MOD) for i in range(1,6)] nana=yoko=nume[5]*2%MOD tate=nume[5] ans=798595483 for i in range(N-1): ans+=nana*nume[3]*2%MOD ans+=yoko*nume[2]%MOD ans+=tate ans%=MOD tate,yoko,nana=\ (nana+tate)*nume[3]%MOD,\ (nana*nume[3]+yoko*nume[2])%MOD,\ (2*tate*nume[3]+nana*nume[3]+yoko*nume[2])%MOD print(ans) # user config ############ DEBUG_MODE=1 ############ # import import sys import itertools import bisect import math from collections import * from functools import cache from heapq import * # alias DD = defaultdict BSL = bisect.bisect_left BSR = bisect.bisect_right # config input = sys.stdin.readline sys.setrecursionlimit(10**7) # input def II(): return int(input()) def IS(): return input()[:-1] def MI(): return map(int,input().split()) def LM(): return list(MI()) def LL(n): return [LM() for _ in range(n)] def MI_1(): return map(lambda x:int(x)-1,input().split()) def LM_1(): return list(MI_1()) def LL_1(n): return [LM_1() for _ in range(n)] def ALPHABET_TO_NUM(string, upper=False): return list(map(lambda elm:ord(elm)-ord("A") if upper else ord(elm)-ord("a"), string)) # functions def DB(*args,**kwargs): global DEBUG_MODE if not DEBUG_MODE: return if args: print(*args) return for name, value in kwargs.items(): print(f"{name} : {value}") def bit_count(num): length = num.bit_length() res = 0 for i in range(length): if num >> i & 1: res += 1 return res def popcount64(n): # 63桁まで高速に動く.64桁まで正常に動く. c=(n&0x5555555555555555)+((n>>1)&0x5555555555555555) c=(c&0x3333333333333333)+((c>>2)&0x3333333333333333) c=(c&0x0f0f0f0f0f0f0f0f)+((c>>4)&0x0f0f0f0f0f0f0f0f) c=(c&0x00ff00ff00ff00ff)+((c>>8)&0x00ff00ff00ff00ff) c=(c&0x0000ffff0000ffff)+((c>>16)&0x0000ffff0000ffff) c=(c&0x00000000ffffffff)+((c>>32)&0x00000000ffffffff) return c def argmax(*args): if len(args) == 1 and hasattr(args[0], '__iter__'): lst = args[0] else: lst = args return lst.index(max(lst)) def argmin(*args): if len(args) == 1 and hasattr(args[0], '__iter__'): lst = args[0] else: lst = args return lst.index(min(lst)) def prefix_op(lst, op=lambda x,y:x+y, e=0): N = len(lst) res = [e]*(N+1) for i in range(N): res[i+1] = op(res[i], lst[i]) return res def suffix_op(lst, op=lambda x,y:x+y, e=0): N = len(lst) res = [e]*(N+1) for i in range(N): res[N-1-i] = op(lst[N-1-i], res[N-i]) return res def sigma_LinearFunc(coeff1, coeff0, left, right, MOD=None): """ coeff1*x + coeff0 の x = [left, right] の和を求める. MODで計算したい場合、区間の引数をMOD取った上で代入しても良い. そのとき、left > right となってもよい. """ if MOD: # MODが素数でない場合にも対応するように、和公式を適応後に剰余を計算. return ((coeff0%MOD*((right-left+1)%MOD)%MOD) + (coeff1%MOD*((left+right)*(right-left+1)//2%MOD)%MOD))%MOD return coeff0*(right-left+1) + coeff1*(left+right)*(right-left+1)//2 def find_divisors(n): divs_small, divs_big = [], [] i = 1 while i * i <= n: if n % i == 0: divs_small.append(i) divs_big.append(n // i) i += 1 if divs_big[-1] == divs_small[-1]: divs_big.pop() for e in reversed(divs_big): divs_small.append(e) return divs_small def prime_factorization(n): n_intact = n ret = [] i = 2 while i * i <= n_intact: if n % i == 0: cnt = 0 while n % i == 0: n //= i cnt += 1 ret.append((i,cnt)) i += 1 if n != 1: ret.append((n,1)) return ret """ 矩形の二次元配列を扱う諸関数 """ def copy_table(table): H,W = len(table), len(table[0]) res = [] for i in range(H): res.append([]) for j in range(W): res[-1].append(table[i][j]) return res def sum_table(table, MOD=None): H,W = len(table), len(table[0]) res = 0 for i in range(H): for j in range(W): res += table[i][j] if MOD: res %= MOD return res def transpose_table(table): H,W = len(table), len(table[0]) res = [[None]*H for _ in range(W)] for i in range(H): for j in range(W): res[j][i] = table[i][j] return res def convert_table_to_bit(table, letter1="#", rev=False): H,W = len(table), len(table[0]) res = [] for h in range(H): rowBit = 0 for w in range(W): if rev: if table[h][w] == letter1: rowBit += 2**w else: if table[h][W-w-1] == letter1: rowBit += 2**w res.append(rowBit) return res def rotate_table_cc(S): return list(zip(*S))[::-1] def rotate_table_c(S): return list(zip(*S[::-1])) def mul_matrix(A, B, mod): N = len(A) K = len(A[0]) M = len(B[0]) res = [[0 for _ in range(M)] for _ in range(N)] for i in range(N) : for j in range(K) : for k in range(M) : res[i][k] += A[i][j] * B[j][k] res[i][k] %= mod return res def pow_matrix(mat, exp, mod): N = len(mat) res = [[1 if i == j else 0 for i in range(N)] for j in range(N)] while exp > 0 : if exp%2 == 1 : res = mul_matrix(res, mat, mod) mat = mul_matrix(mat, mat, mod) exp //= 2 return res def compress(lst): D = {e:i for i,e in enumerate(sorted(set(lst)))} return [D[e] for e in lst] def highDimCompress(lst): #(x,y)の配列や,(x,y,z)の配列が与えられたとき,軸ごとに座圧する. return list(zip(*list(map(compress,list(zip(*lst)))))) #classes # https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py from bisect import bisect_left, bisect_right from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional T = TypeVar('T') class SortedSet(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) n = self.size = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() if any(a[i] >= a[i + 1] for i in range(n - 1)): a, b = [], a for x in b: if not a or a[-1] != x: a.append(x) bucket_size = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // bucket_size : n * (i + 1) // bucket_size] for i in range(bucket_size)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a, b, i = self._position(x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] return True def _pop(self, a: List[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans """ (num, cnt)を要素としたSSを管理してMultiset化したいとき用. """ def exist(self, x): ret = self.gt((x,0)) if ret is None: return False elif ret[0] == x: return True else: return False def increment(self, x): if not self.exist(x): self.add((x,1)) else: num, cnt = self.gt((x,0)) self.discard((x,cnt)) self.add((x,cnt+1)) def decrement(self, x): if not self.exist(x): return num, cnt = self.gt((x,0)) if cnt == 1: self.discard((x,cnt)) else: self.discard((x,cnt)) self.add((x,cnt-1)) def multi_add(self, x, y): if not self.exist(x): self.add((x,y)) else: num, cnt = self.gt((x,0)) self.discard((x,cnt)) self.add((x,cnt+y)) def multi_sub(self, x, y): if not self.exist(x): return num, cnt = self.gt((x,0)) if cnt <= y: self.discard((x,cnt)) else: self.discard((x,cnt)) self.add((x,cnt-y)) # https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 16 SPLIT_RATIO = 24 def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) n = self.size = len(a) if any(a[i] > a[i + 1] for i in range(n - 1)): a.sort() num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO))) self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)] def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __eq__(self, other) -> bool: return list(self) == list(other) def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _position(self, x: T) -> Tuple[List[T], int, int]: "return the bucket, index of the bucket and position in which x should be. self must not be empty." for i, a in enumerate(self.a): if x <= a[-1]: break return (a, i, bisect_left(a, x)) def __contains__(self, x: T) -> bool: if self.size == 0: return False a, _, i = self._position(x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a, b, i = self._position(x) a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.SPLIT_RATIO: mid = len(a) >> 1 self.a[b:b+1] = [a[:mid], a[mid:]] def _pop(self, a: List[T], b: int, i: int) -> T: ans = a.pop(i) self.size -= 1 if not a: del self.a[b] return ans def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a, b, i = self._position(x) if i == len(a) or a[i] != x: return False self._pop(a, b, i) return True def lt(self, x: T) -> Optional[T]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Optional[T]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Optional[T]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Optional[T]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, i: int) -> T: "Return the i-th element." if i < 0: for a in reversed(self.a): i += len(a) if i >= 0: return a[i] else: for a in self.a: if i < len(a): return a[i] i -= len(a) raise IndexError def pop(self, i: int = -1) -> T: "Pop and return the i-th element." if i < 0: for b, a in enumerate(reversed(self.a)): i += len(a) if i >= 0: return self._pop(a, ~b, i) else: for b, a in enumerate(self.a): if i < len(a): return self._pop(a, b, i) i -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class Comb: def __init__(self,table_len,mod): """ modが素数の場合しか使用できない. table_len に指定した数まで法modでのコンビネーションの計算が可能になる. """ self.fac = [1,1] self.inv = [1,1] self.finv = [1,1] self.mod = mod for i in range(2,table_len+1): self.fac.append(self.fac[i-1]*i%mod) self.inv.append(-self.inv[mod%i]*(mod//i)%mod) self.finv.append(self.finv[i-1]*self.inv[i]%mod) def comb(self,a,b): return self.fac[a]*self.finv[b]*self.finv[a-b]%self.mod class GridBFS: def __init__(self, table): #二次元配列や文字列の配列を受け取る. self.table = table self.H = len(table) self.W = len(table[0]) self.wall = "#" def find(self, c): #table から引数の文字を探しインデックスを返す. 無い時、None. for h in range(self.H): for w in range(self.W): if self.table[h][w] == c: return (h,w) return None def set_wall_string(self, string): #壁として扱う文字を "#!^" の様に文字列リテラルで格納. 初期値は、"#" self.wall = string def island(self, transition = [[-1,0],[0,1],[1,0],[0,-1]]): H, W = self.H, self.W self.island_id = [[-1]*W for _ in range(H)] self.island_size = [[-1]*W for _ in range(W)] crr_id = 0 id2size = dict() for sh in range(H): for sw in range(W): if self.table[sh][sw] in self.wall: continue if self.island_id[sh][sw] != -1: continue deq = deque() deq.append((sh,sw)) crr_size = 1 self.island_id[sh][sw] = crr_id while deq: h,w = deq.popleft() for dh, dw in transition: nh, nw = h+dh, w+dw if (not 0<=nh new_dist: dist[nh][nw] = new_dist deq.append((nh,nw)) # goalが設定されていていまだreturnされていないなら, # goalに到達できなかったということ. if goal: return -1 return dist class nth_root: def __init__(self): self.ngs = [-1, -1, 4294967296, 2642246, 65536, 7132, 1626, 566, 256, 139, 85, 57, 41, 31, 24, 20, 16, 14, 12, 11, 10, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3] """ pre-calculated by this code """ # self.ngs = [-1,-1] # for n in range(2,64): # ok,ng=2**33,0 # while abs(ok-ng)>1: # mid=ok+ng>>1 # if mid**n>=2**64: # ok=mid # else: # ng=mid # self.ngs.append(ok) """ xが64bitに収まる時高速. そうでないときも動作するが速度の保証無し. """ def calc(self, x, n, is_x_within_64bit=True): if x<=1 or n==1: return x if is_x_within_64bit: if n>=64: return 1 ng = self.ngs[n] else: ng = x ok = 0 while abs(ok-ng)>1: mid = ok+ng>>1 if mid**n <= x: ok = mid else: ng = mid return ok # well-used const global DIRECTION_4, DIRECTION_8, DIRECTION_DIAGONAL, DIRECTION_URDL_TABLE, DIRECTION_URDL_COORD_PLANE, MOD, INF, LOWER_ALP, UPPER_ALP, ALL_ALP # clockwise from top. DIRECTION_4 = [[-1,0],[0,1],[1,0],[0,-1]] DIRECTION_8 = [[-1,0],[-1,1],[0,1],[1,1],[1,0],[1,-1],[0,-1],[-1,-1]] DIRECTION_DIAGONAL = [[-1,1],[1,1],[1,-1],[-1,-1]] DIRECTION_URDL_TABLE = {'U':(-1,0), 'R':(0,1), 'D':(1,0), 'L':(0,-1)} DIRECTION_URDL_COORD_PLANE = {'U':(0,1), 'R':(1,0), 'D':(0,-1), 'L':(-1,0)} MOD = 998244353 INF = 1<<60 LOWER_ALP = "abcdefghijklmnopqrstuvwxyz" UPPER_ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" ALL_ALP = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" main()