#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN IN VO Solve() { CIN( int , N , Q ); BoundedLineSubset S{0,N-1}; FOR( i , 0 , N ){ CIN( int , a ); if( a == 1 ){ S.insert( i ); } } REPEAT( Q ){ CIN( int , T , X , Y ); if( T == 1 ){ S.erase( --X ); if( Y == 1 ){ S.insert( X ); } } else { --X; auto [l,r] = S.ConnectedComponentOf( --Y ); COUT( "SF"[r < Y || ( ( Y - max( X , l ) ) & 1 ) == ( X < l )] ); } } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // COMPAREに使用。圧縮時は削除する。 int Naive( int N , int M , int K , const bool& experiment = false ) { int answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 IN VO Experiment() { // CEXPR( int , bound , 10 ); // // // vector naive1( bound + 1 ); // FOREQ( N , 0 , bound ){ // // vector naive2( bound + 1 ); // FOREQ( M , 0 , bound ){ // vector naive3( bound + 1 ); // FOREQ( K , 0 , bound ){ // naive3[K] = Naive( N , M , K , true ); // } // cout << "(N,M)=("N << "," << M << "),K∈[" << 0 << "--" << bound << "]: " << naive3 << endl; // // naive2[M] = Naive( N , M , true ); // } // // cout << "N=" << N << ",M∈[" << 0 << "--" << bound << "]: " << naive2 << endl; // // // naive1[N] = Naive( N , true ); // } // // // cout << "N∈[" << 0 << "--" << bound << "]: " << naive1 << endl; } // 圧縮時は中身だけ削除する。 IN VO SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // } } // 圧縮時は中身だけ削除する。 IN VO RandomTest( CRI test_case_num ) { // REPEAT( test_case_num ){ // CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N ); // CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M ); // CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K ); // COMPARE( N , M , K ); // } } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* - BFS (6KB) Geometry/Graph/Algorithm/BreadthFirstSearch/ - AdicExhausiveSearch (11KB) Geometry/Graph/Algorithm/BreadthFirstSearch/AdicExhausiveSearch/ - BIT (5KB) SetTheory/DirectProduct/AffineSpace/BIT/ - IntervalAdd (9KB) SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/ - IntervalMax (9KB) SetTheory/DirectProduct/AffineSpace/BIT/IntervalMax/ - CoordinateCompress (3KB) SetTheory/DirectProduct/CoordinateCompress/ - DFS (6KB) Geometry/Graph/Algorithm/DepthFirstSearch/ - Tree (11KB) Geometry/Graph/Algorithm/DepthFirstSearch/Tree/ - DifferenceSequence (9KB) SetTheory/DirectProduct/AffineSpace/DifferenceSequence/ - TwoDimensional (5KB) SetTheory/DirectProduct/AffineSpace/DifferenceSequence/TwoDimensional/ - Dijkstra (6KB) Geometry/Graph/Algorithm/Dijkstra/ - MinimumCostFlow (16KB) Geometry/Graph/Algorithm/Dijkstra/Potentialised/MinimumCostFlow/ - Divisor/Prime/Factorisation (4KB) Arithmetic/Divisor/ - Knapsack (8KB) Combinatorial/KnapsackProblem/ - SqrtDecomposition - Monoid (5KB) SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Monoid/ - CommutativeDual (6KB) SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Dual/Commutative/ - IntervalMultiplyLazy (18KB) SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/IntervalMultiply/ - TruncatedPolynomial (31KB) Polynomial/Truncate/ - NonProth (34KB) Polynomial/Truncate/NonProth/ - TwoByTwoMatrix (6KB) LinearAlgebra/ - TwoByOneMatrix (9KB) LinearAlgebra/TwoByOne/ - UnionFind (3KB) Geometry/Graph/Algorithm/UnionFindForest/ */ // VVV 常設でないライブラリは以下に挿入する。 #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/SetTheory/Line/Bounded/Debug/a_Body.hpp" #else #define SFINAE_FOR_BIT_BS enable_if_t>* TE CL AbstractBIT{PU:ABELIAN_GROUP m_M;int m_SZ;VE m_fenwick;int m_PW;IN AbstractBIT(ABELIAN_GROUP M,CRI SZ = 0);IN AbstractBIT(ABELIAN_GROUP M,CO VE& a);TE IN VO Initialise(CO Args&... args);IN VO Set(CRI i,CO U& u);VO Add(CRI i,CO U& u);IN CRI SZ()CO NE;IN U OP[](CRI i);IN U Get(CRI i);IN CO U& LSBSegmentSum(CRI j)CO;U InitialSegmentSum(CRI i_final);IN U IntervalSum(CRI i_start,CRI i_final);TE int Search(CO F& f);TE IN int Search(CRI i_start,CO F& f);IN int Search(CO U& u);IN int Search(CRI i_start,CO U& u);IN VO COruct();};TE AbstractBIT(ABELIAN_GROUP M,CO Args&... args)-> AbstractBIT,ABELIAN_GROUP>;TE CL BIT:PU AbstractBIT>{PU:TE IN BIT(CO Args&... args);};TE BIT(CO VE& a)-> BIT; TE IN AbstractBIT::AbstractBIT(ABELIAN_GROUP M,CRI SZ):m_M(MO(M)),m_SZ(SZ),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();}TE IN AbstractBIT::AbstractBIT(ABELIAN_GROUP M,CO VE& a):m_M(MO(M)),m_SZ(a.SZ()),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j & -j);WH(i > i_lim){fenwick_j = m_M.Sum(MO(fenwick_j),m_fenwick[i]);i -=(i & -i);}}}TE IN VO AbstractBIT::COruct(){ST_AS(is_same_v>);WH(m_PW < m_SZ){m_PW <<= 1;}}TE TE IN BIT::BIT(CO Args&... args):AbstractBIT>(AdditiveGroup(),args...){}TE TE IN VO AbstractBIT::Initialise(CO Args&... args){AbstractBIT temp{m_M,args...};m_SZ = temp.m_SZ;m_fenwick = MO(temp.m_fenwick);m_PW = temp.m_PW;}TE IN VO AbstractBIT::Set(CRI i,CO U& u){Add(i,m_M.Sum(m_M.Inverse(IntervalSum(i,i)),u));}TE VO AbstractBIT::Add(CRI i,CO U& u){int j = i + 1;WH(j <= m_SZ){U& fenwick_j = m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),u);j +=(j & -j);}RE;}TE IN CRI AbstractBIT::SZ()CO NE{RE m_SZ;}TE IN U AbstractBIT::OP[](CRI i){AS(0 <= i && i < m_SZ);RE IntervalSum(i,i);}TE IN U AbstractBIT::Get(CRI i){RE OP[](i);}TE IN CO U& AbstractBIT::LSBSegmentSum(CRI j)CO{AS(0 < j && j <= m_SZ);RE m_fenwick[j];}TE U AbstractBIT::InitialSegmentSum(CRI i_final){U sum = m_M.Zero();int j = min(i_final + 1,m_SZ);WH(j > 0){sum = m_M.Sum(MO(sum),m_fenwick[j]);j -= j & -j;}RE sum;}TE IN U AbstractBIT::IntervalSum(CRI i_start,CRI i_final){RE m_M.Sum(m_M.Inverse(InitialSegmentSum(i_start - 1)),InitialSegmentSum(i_final));}TE TE int AbstractBIT::Search(CO F& f){int j = 0;int PW = m_PW;U sum = m_M.Zero();U sum_next = sum;WH(PW > 0){int j_next = j | PW;if(j_next <= m_SZ){sum_next = m_M.Sum(MO(sum_next),m_fenwick[j_next]);if(f(sum_next,j_next - 1)){sum_next = sum;}else{sum = sum_next;j = j_next;}}PW >>= 1;}RE j;}TE TE IN int AbstractBIT::Search(CRI i_start,CO F& f){CO U u_inv = m_M.Inverse(InitialSegmentSum(i_start - 1));RE max(i_start,Search([&](CO U& sum,CRI i){RE i_start <= i && f(m_M.Sum(u_inv,sum),i);}));}TE IN int AbstractBIT::Search(CO U& u){RE Search([&](CO U& sum,CRI){RE !(sum < u);});}TE IN int AbstractBIT::Search(CRI i_start,CO U& u){RE max(i_start,Search(m_M.Sum(InitialSegmentSum(i_start - 1),u)));} TE CL IteratorOfBoundedLineSubset{PU:BLS* m_p;INT m_i;IN IteratorOfBoundedLineSubset(BLS& S,INT i);IN bool OP==(CO IteratorOfBoundedLineSubset& IT)CO NE;IN bool OP!=(CO IteratorOfBoundedLineSubset& IT)CO NE;IN INT OP*()CO;IN IteratorOfBoundedLineSubset& OP++();IN IteratorOfBoundedLineSubset OP++(int);IN IteratorOfBoundedLineSubset& OP--();IN IteratorOfBoundedLineSubset OP--(int);IN VO Next();IN VO Prev();IN pair ConnectedComponent()CO;IN IteratorOfBoundedLineSubset& erase_from(BLS& S);}; TE IN IteratorOfBoundedLineSubset::IteratorOfBoundedLineSubset(BLS& S,INT i):m_p(&S),m_i(MO(i)){}TE IN bool IteratorOfBoundedLineSubset::OP==(CO IteratorOfBoundedLineSubset& IT)CO NE{RE m_p == IT.m_p && m_i == IT.m_i;}TE IN bool IteratorOfBoundedLineSubset::OP!=(CO IteratorOfBoundedLineSubset& IT)CO NE{RE !(*TH == IT);}TE IN INT IteratorOfBoundedLineSubset::OP*()CO{RE m_i;}TE IN IteratorOfBoundedLineSubset& IteratorOfBoundedLineSubset::OP++(){AS(m_i <= m_p->ubound());RE *TH = m_p->MinimumGt(m_i);}TE IN IteratorOfBoundedLineSubset IteratorOfBoundedLineSubset::OP++(int){auto IT = *TH;++(*TH);RE IT;}TE IN IteratorOfBoundedLineSubset& IteratorOfBoundedLineSubset::OP--(){AS(m_p->BE().m_i <= m_i);RE *TH = m_p->MaximumLt(m_i);}TE IN IteratorOfBoundedLineSubset IteratorOfBoundedLineSubset::OP--(int){auto IT = *TH;--(*TH);RE IT;}TE IN VO IteratorOfBoundedLineSubset::Next(){AS(m_i < m_p->ubound());CO INT r = m_p->RightEndPointOf(m_i);*TH = m_i <= r?m_p->MinimumGt(r):m_p->EN();}TE IN VO IteratorOfBoundedLineSubset::Prev(){AS(m_p->lbound()< m_i);CO INT l = m_p->LeftEndPointOf(m_i);*TH = l <= m_i?m_p->MaximumLt(l):m_p->EN();}TE IN pair IteratorOfBoundedLineSubset::ConnectedComponent()CO{RE m_p->ConnectedComponentOf(m_i);}TE IN IteratorOfBoundedLineSubset& IteratorOfBoundedLineSubset::erase_from(BLS& S){AS(&S == m_p);auto IT_copy =(*TH)++;S.erase(IT_copy);RE *TH;} TE TY DATA_STR>CL VirtualBoundedLineSubset{PU:INT m_lbound;INT m_ubound;DATA_STR m_ds;US iterator = IteratorOfBoundedLineSubset,INT>;IN VO insert(CO INT& i);IN VO erase(CO INT& i);IN iterator& erase(iterator& IT);IN int count(CO INT& i)NE;bool find(CO INT& i)NE;IN int InitialSegmentCount(CO INT& i_final)NE;IN int IntervalCount(CO INT& i_start,CO INT& i_final)NE;IN bool empty()NE;IN iterator BE()NE;IN iterator EN()NE;IN iterator MaximumLeq(CO INT& i,CRI k = 0)NE;IN iterator MaximumLt(CO INT& i,CRI k = 0)NE;IN iterator MinimumGeq(CO INT& i,CRI k = 0)NE;IN iterator MinimumGt(CO INT& i,CRI k = 0)NE;IN INT Maximum(CRI k = 0);IN INT Minimum(CRI k = 0);INT RightEndPointOf(CO INT& i,CO bool& in = false)NE;INT LeftEndPointOf(CO INT& i,CO bool& in = false)NE;IN pair ConnectedComponentOf(CO INT& i,bool in = false)NE;VE> GetConnectedComponent()NE;IN CO INT& lbound()CO NE;IN CO INT& ubound()CO NE;VI bool InRange(CO INT& i)= 0;VI RET_NOR Normalise(CO INT& i)= 0;VI RET_DEN Denormalise(CO decay_t& d)= 0;}; TE TY DATA_STR> IN VO VirtualBoundedLineSubset::insert(CO INT& i){AS(InRange(i));m_ds.Set(Normalise(i),1);}TE TY DATA_STR> IN VO VirtualBoundedLineSubset::erase(CO INT& i){m_ds.Set(Normalise(i),0);}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator& VirtualBoundedLineSubset::erase(TY VirtualBoundedLineSubset::iterator& IT){RE IT.erase_from(*TH);}TE TY DATA_STR> IN int VirtualBoundedLineSubset::count(CO INT& i)NE{RE InRange(i)?m_ds[Normalise(i)]:0;}TE TY DATA_STR> IN bool VirtualBoundedLineSubset::find(CO INT& i)NE{RE count(i)> 0;}TE TY DATA_STR> IN int VirtualBoundedLineSubset::InitialSegmentCount(CO INT& i_final)NE{RE m_ds.InitialSegmentSum(Normalise(i_final));}TE TY DATA_STR> IN int VirtualBoundedLineSubset::IntervalCount(CO INT& i_start,CO INT& i_final)NE{RE m_ds.IntervalSum(Normalise(i_start),Normalise(i_final));}TE TY DATA_STR> IN bool VirtualBoundedLineSubset::empty()NE{RE InitialSegmentCount(m_ubound)== 0;}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator VirtualBoundedLineSubset::BE()NE{RE MinimumGeq(m_lbound);}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator VirtualBoundedLineSubset::EN()NE{RE TY VirtualBoundedLineSubset::iterator(*TH,m_ubound + 1);}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator VirtualBoundedLineSubset::MaximumLeq(CO INT& i,CRI k)NE{CO INT num = InitialSegmentCount(i)- k;CO INT l = m_ds.Search([&](CO INT& sum,CRI j){RE num <= sum;})+ m_lbound;RE num >= 0 && find(l)?TY VirtualBoundedLineSubset::iterator{*TH,l}:EN();}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator VirtualBoundedLineSubset::MaximumLt(CO INT& i,CRI k)NE{RE MaximumLeq(i - 1,k);}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator VirtualBoundedLineSubset::MinimumGeq(CO INT& i,CRI k)NE{RE MinimumGt(i - 1,k);}TE TY DATA_STR> IN TY VirtualBoundedLineSubset::iterator VirtualBoundedLineSubset::MinimumGt(CO INT& i,CRI k)NE{CO INT num = InitialSegmentCount(i)+ k;CO INT r = m_ds.Search([&](CO INT& sum,CRI j){RE num < sum;})+ m_lbound;RE find(r)?TY VirtualBoundedLineSubset::iterator{*TH,r}:EN();}TE TY DATA_STR> IN INT VirtualBoundedLineSubset::Maximum(CRI k){RE MaximumLeq(m_ubound,k);}TE TY DATA_STR> IN INT VirtualBoundedLineSubset::Minimum(CRI k){RE MinimumGeq(m_lbound,k);}TE TY DATA_STR>INT VirtualBoundedLineSubset::RightEndPointOf(CO INT& i,CO bool& in)NE{if(!in && !find(i)){RE i - 1;}CO int d = Normalise(i);CO INT comp_minus = d - InitialSegmentCount(i);RE Denormalise(m_ds.Search([&](CO INT& sum,CRI j){RE d <= j && sum + comp_minus < j;})- 1);}TE TY DATA_STR>INT VirtualBoundedLineSubset::LeftEndPointOf(CO INT& i,CO bool& in)NE{if(!in && !find(i)){RE i + 1;}CO int d = Normalise(i);CO INT comp_minus = d - InitialSegmentCount(i);RE Denormalise(m_ds.Search([&](CO INT& sum,CRI j){RE d <= j ||(find(j)&& sum + comp_minus == j);}));}TE TY DATA_STR> IN pair VirtualBoundedLineSubset::ConnectedComponentOf(CO INT& i,bool in)NE{if(!in){in = find(i);}RE{LeftEndPointOf(i,in),RightEndPointOf(i,in)};}TE TY DATA_STR>VE> VirtualBoundedLineSubset::GetConnectedComponent()NE{VE> AN{};INT r;for(auto IT = BE();*IT <= m_ubound;IT = MinimumGt(r)){AN.push_back({*IT,r = RightEndPointOf(*IT)});}RE AN;}TE TY DATA_STR> IN CO INT& VirtualBoundedLineSubset::lbound()CO NE{RE m_lbound;}TE TY DATA_STR> IN CO INT& VirtualBoundedLineSubset::ubound()CO NE{RE m_ubound;} TE TY DATA_STR>CL AbstractBoundedLineSubset:VI PU VirtualBoundedLineSubset{PU:IN AbstractBoundedLineSubset(CO INT& lbound,CO INT& ubound);IN bool InRange(CO INT& i);IN INT Normalise(CO INT& i);IN INT Denormalise(CO INT& d);}; TE US BoundedLineSubset = AbstractBoundedLineSubset; TE TY DATA_STR> IN AbstractBoundedLineSubset::AbstractBoundedLineSubset(CO INT& lbound,CO INT& ubound){AS(lbound <= ubound + 1);TH->m_lbound = lbound;TH->m_ubound = ubound;TH->m_ds.Initialise(TH->m_ubound - TH->m_lbound + 1);}TE TY DATA_STR> IN bool AbstractBoundedLineSubset::InRange(CO INT& i){RE TH->m_lbound <= i && i <= TH->m_ubound;}TE TY DATA_STR> IN INT AbstractBoundedLineSubset::Normalise(CO INT& i){RE i - TH->m_lbound;}TE TY DATA_STR> IN INT AbstractBoundedLineSubset::Denormalise(CO INT& d){RE d + TH->m_lbound;} #endif // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifndef DEBUG #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( I , N , A ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = 0.0 , current_time = 0.0; int loop_count = 0 #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define OUTPUT_ARRAY( C , I , N , A ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , I , N ){ C << A[VARIABLE_FOR_OUTPUT_ARRAY] << " \n"[VARIABLE_FOR_OUTPUT_ARRAY==(N)-1]; } #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , true ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize // 型のエイリアス #define decldecay_t(VAR)decay_t TE US ret_t = decltype(declval()(declval()...)); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same::value && ! is_same::value ); \ ll ANSWER = MINIMUM; \ { \ ll ANSWER ## _L = MINIMUM; \ ll ANSWER ## _R = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ const ll CONST_TARGET_BS = ( CONST_TARGET ); \ ll DIFFERENCE_BS; \ while( ANSWER ## _L < ANSWER ## _R ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \ CERR( "二分探索中:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #EXPRESSION , "=" , EXPRESSION_BS , DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CONST_TARGET_BS , "=" , #CONST_TARGET ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ ANSWER ## _R = UPDATE_U; \ } else { \ ANSWER ## _L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( ANSWER ## _L > ANSWER ## _R ){ \ CERR( "二分探索失敗:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , ">" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" , ":" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , string{ #ANSWER } + "_L" , "=" , ANSWER ## _L , "<=" , #ANSWER , "=" , ANSWER , "<=" , ANSWER ## _R , "=" , string{ #ANSWER } + "_R" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , ( ANSWER ## _L + ANSWER ## _R ) / 2 ) // 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , ( ANSWER ## _L + 1 + ANSWER ## _R ) / 2 ) // 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , ( ANSWER ## _L + 1 + ANSWER ## _R ) / 2 ) // 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , ( ANSWER ## _L + ANSWER ## _R ) / 2 ) // 尺取り法用 // VAR_TPAは尺取り法用の変数名の接頭辞で、実際の変数名ではなく、_Lと_Rと_infoがつく。 // ANSWER ## _temp = {VAR_TPA ## _L,VAR_TPA ## _R,VPA_TPA ## _info}を{INIT,INIT,INFO_init}で初期化する。VPA_TPA ## _infoは区間和など。 // ANSWER ## _tempがCONTINUE_CONDITIONを満たす限り、ANSWER ## _tempが条件ON_CONDITIONを満たすか否かを判定し、 // それがtrueになるかVAR_TAR ## _LがVAR_TAR ## _Rに追い付くまでVAR_TPA ## _LとVPA_TPA ## _infoの更新操作UPDATE_Lを繰り返し、 // その後VAR_TPA ## _RとVPA_TPA ## _infoの更新操作UPDATE_Rを行う。(マクロとコンマの制約上、関数オブジェクトを用いる) // ON_CONDITIONがtrueとなる極大閉区間とその時点でのinfoをANSWERに格納する。 // 例えば長さNの非負整数値配列Aで極大な正値区間とそこでの総和を取得したい場合 // auto update_L = [&]( int& i_L , ll& i_info ){ // i_info -= A[i_L++]; // }; // auto update_R = [&]( int& i_R , ll& i_info ){ // ++i_R < N ? i_info += A[i_R] : i_info; // }; // TPA( interval , i , 0 , i_R < N , update_L( i_L , i_info ) , update_R( i_R , i_info ) , A[i_L] > 0 && A[i_R] > 0 , ll( A[0] ) ); // とすればtuple値配列intervalに{左端,右端,総和}の列が格納される。 #define TPA( ANSWER , VAR_TPA , INIT , CONTINUE_CONDITION , UPDATE_L , UPDATE_R , ON_CONDITION , INFO_init ) \ vector> ANSWER{}; \ { \ auto init_TPA = INIT; \ decldecay_t( ANSWER.front() ) ANSWER ## _temp = { init_TPA , init_TPA , INFO_init }; \ auto ANSWER ## _prev = ANSWER ## _temp; \ auto& VAR_TPA ## _L = get<0>( ANSWER ## _temp ); \ auto& VAR_TPA ## _R = get<1>( ANSWER ## _temp ); \ auto& VAR_TPA ## _info = get<2>( ANSWER ## _temp ); \ bool on_TPA_prev = false; \ while( true ){ \ bool continuing = CONTINUE_CONDITION; \ bool on_TPA = continuing && ( ON_CONDITION ); \ CERR( continuing ? "尺取り中" : "尺取り終了" , ": [L,R] = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , "] ," , on_TPA_prev ? "on" : "off" , "->" , on_TPA ? "on" : "off" , ", info =" , VAR_TPA ## _info ); \ if( on_TPA_prev && ! on_TPA ){ \ ANSWER.push_back( ANSWER ## _prev ); \ CERR( #ANSWER , "に" , ANSWER ## _prev , "を格納します。" ); \ } \ if( continuing ){ \ if( on_TPA || VAR_TPA ## _L == VAR_TPA ## _R ){ \ ANSWER ## _prev = ANSWER ## _temp; \ UPDATE_R; \ } else { \ UPDATE_L; \ } \ } else { \ break; \ } \ on_TPA_prev = on_TPA; \ } \ } \ // データ構造用 TE IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE IN CO T& Zero(){ST CO T z{};RE z;} TE IN CO T& One(){ST CO T o = 1;RE o;}TE IN T AdditionInv(CO T& t){RE -t;} TE IN T Id(CO T& v){RE v;} TE IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE IN T Max(CO T& a,CO T& b){RE a < b?b:a;} // VVV 常設ライブラリは以下に挿入する。 #ifdef DEBUG #include "C:/Users/user/Documents/Programming/Contest/Template/include/a_Body.hpp" #else // Random(1KB) ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;} // Set (1KB) #define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;}; CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Set = conditional_t>,unordered_set,conditional_t,set,VO>>; // Tuple(4KB) #define DF_OF_AR_FOR_TUPLE(OPR)TE TY V> IN auto OP OPR ## =(V& t0,CO V& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO tuple& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO tuple& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE TY V> IN auto OP OPR ## =(V& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE TY V,TY...ARGS,TY ARG> IN auto OP OPR(CO V& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);} #define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE TY V> IN auto OP INCR(V& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE IN tuple& OP INCR(tuple& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE IN tuple& OP INCR(tuple& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;} TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg);}TE TY V> IN auto OP>>(IS& is,V& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg);}TE TY V> IN auto OP<<(OS& os,CO V& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--); #define DF_OF_HASH_FOR_TUPLE(PAIR)TE IN size_t hash>::OP()(CO PAIR& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash h0;ST CO hash h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));} TE DC_OF_HASH(tuple);TE DC_OF_HASH(pair);TE DC_OF_HASH(tuple);TE DC_OF_HASH(tuple);TE DC_OF_HASH(tuple); TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO hash h;RE h(get<0>(n));}DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash> h01;ST CO hash h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash> h01;ST CO hash> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});} // Vector(2KB) #define DF_OF_COUT_FOR_VE(V)TE IN OS& OP<<(OS& os,CO V& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} #define DF_OF_AR_FOR_VE(V,OPR)TE IN V& OP OPR ## =(V& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;}TE IN V& OP OPR ## =(V& a0,CO V& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE IN V OP OPR(V a,CO U& u){RE MO(a OPR ## = u);} #define DF_OF_INCREMENT_FOR_VE(V,INCR)TE IN V& OP INCR(V& a){for(auto& i:a){INCR i;}RE a;} #define DF_OF_ARS_FOR_VE(V)DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--);TE IN V OP*(CO T& scalar,V v){for(auto& t:v){v *= t;}RE MO(v);} DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);IN VO VariadicResize(CRI SZ){}TE IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}TE IN auto Get(V& a){RE[&](CRI i = 0)-> CO decldecay_t(a[0])&{RE a[i];};}TE IN VE id(CRI SZ){VE AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}TE VO Sort(VE& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}TE IN VE IndexSort(CO VE& a,CO bool& reversed = false){auto index = id(a.SZ());if(reversed){sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[j]< a[i];});}else{sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[i]< a[j];});}RE index;} // Map (1KB) #define DF_OF_AR_FOR_MAP(MAP,OPR)TE IN MAP& OP OPR ## =(MAP& a,CO pair& v){a[v.first]OPR ## = v.second;RE a;}TE IN MAP& OP OPR ## =(MAP& a0,CO MAP& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE IN MAP OP OPR(MAP a,CO ARG& arg){RE MO(a OPR ## = arg);} #define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%); TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map); // StdStream(1KB) TE IN IS& VariadicCin(IS& is){RE is;}TE IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE IN IS& VariadicSet(IS& is,CRI i){RE is;}TE IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE IN OS& VariadicCout(OS& os,CO Arg& arg){RE os << arg;}TE IN OS& VariadicCout(OS& os,CO Arg1& arg1,CO Arg2& arg2,CO ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);}TE IN OS& CoutArray(OS& os,CRI i_start,CRI i_ulim,CO ARRAY& a){for(int i = i_start;i < i_ulim;i++){(i == i_start?os:(os << " "))<< a[i];}RE os;} // Module (6KB) #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma& OP=(CO AbstractMagma&)NE;IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN AbstractNSet& AbstractNSet::operator=(CO AbstractNSet&)NE{RE *TH;}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN AbstractMagma& AbstractMagma::OP=(CO AbstractMagma&)NE{RE *TH;}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} TE CL VirtualRSet:VI PU UnderlyingSet{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE CL RegularRSet:VI PU VirtualRSet,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE RegularRSet(MAGMA magma)-> RegularRSet,MAGMA>;TE CL AbstractRSet:VI PU VirtualRSet{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet& OP=(CO AbstractRSet&)NE;IN U Action(CO R& r,U u);};TE CL AbstractModule:PU AbstractRSet,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualRSet,PU AdditiveGroup{PU:IN U Action(CO R& r,U u);}; TE IN RegularRSet::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE IN AbstractRSet::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v);}TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v>);}TE IN AbstractRSet& AbstractRSet::OP=(CO AbstractRSet&)NE{RE *TH;}TE IN U RegularRSet::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE IN U AbstractRSet::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE IN U Module::Action(CO R& r,U u){RE MO(u *= r);}TE IN U VirtualRSet::PW(U u,CO R& r){RE Action(r,MO(u));}TE IN U VirtualRSet::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} // Graph (5KB) TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;TE IN ret_t Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE IN Graph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);TE IN EnumerationGraph GetGraph(F edge)CO;IN ret_t Enumeration_inv_Body(CO T& t);};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);}; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN R2 VirtualGraph::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE TE IN R2 VirtualGraph::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE IN CRI Graph::Enumeration_inv_Body(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN ret_t VirtualGraph::Edge(CO PATH& p){RE Edge(get<0>(p));}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));}TE IN CO T& VirtualGraph::Vertex(CO T& t)NE{RE t;}TE TE IN CO T& VirtualGraph::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));} // Grid (2KB) #define SET_GRID H_minus = H - 1;W_minus = W - 1;HW = ll(H)* W #define SET_HW(h,w)H = h;W = w;SET_GRID #define CIN_HW cin >> H >> W;SET_GRID TE CL GridGraph:PU EnumerationGraph,T2(&)(CRI),int(&)(CO T2&),E>{PU:IN GridGraph(E e);};int H,W,H_minus,W_minus;ll HW;VE grid;char walkable = '.',unwalkable = '#'; IN T2 EnumHW(CRI v){RE{v / W,v % W};}IN int EnumHW_inv(CO T2& ij){auto&[i,j]= ij;RE i * W + j;}TE IN GridGraph::GridGraph(E e):EnumerationGraph,T2(&)(CRI),int(&)(CO T2&),E>(HW,EnumHW,EnumHW_inv,MO(e)){AS(HW >> 31 == 0 && H * W == HW);}VE> EdgeOnGrid(CO T2& v){VE> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(i > 0 && grid[i-1][j]== walkable){AN.push_back({i-1,j});}if(i+1 < H && grid[i+1][j]== walkable){AN.push_back({i+1,j});}if(j > 0 && grid[i][j-1]== walkable){AN.push_back({i,j-1});}if(j+1 < W && grid[i][j+1]== walkable){AN.push_back({i,j+1});}}RE AN;}VE,ll>> WEdgeOnGrid(CO T2& v){VE,ll>> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(i>0 && grid[i-1][j]== walkable){AN.push_back({{i-1,j},1});}if(i+1 < H && grid[i+1][j]== walkable){AN.push_back({{i+1,j},1});}if(j>0 && grid[i][j-1]== walkable){AN.push_back({{i,j-1},1});}if(j+1 < W && grid[i][j+1]== walkable){AN.push_back({{i,j+1},1});}}RE AN;}IN VO SetWallStringOnGrid(CRI i,VE& S){if(S.empty()){S.resize(H);}cin >> S[i];AS(int(S[i].SZ())== W);}CO string direction="URDL";IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i < k?2:i > k?0:j < h?1:(AS(j > h),3);}IN int DirectionNumberOnGrid(CO T2& v,CO T2& w){auto&[i,j]= v;auto&[k,h]= w;RE DirectionNumberOnGrid(i,j,k,h);}IN int DirectionNumberOnGrid(CRI v,CRI w){RE DirectionNumberOnGrid(EnumHW(v),EnumHW(w));}IN int ReverseDirectionNumberOnGrid(CRI n){AS(0 <= n && n<4);RE n ^ 2;} // ConstexprModulo (7KB) CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;}; #define SFINAE_FOR_MOD enable_if_t>>* #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);TE CE Mod& OP<<=(INT n);TE CE Mod& OP>>=(INT n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE CE Mod OP^(INT EX)CO;TE CE Mod OP<<(INT n)CO;TE CE Mod OP>>(INT n)CO;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;IN Mod& Invert();TE CE Mod& PW(INT EX);CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(uint n)NE;ST IN CO Mod& Inverse(CRUI n);ST IN CO Mod& Factorial(CRUI n);ST IN CO Mod& FactorialInverse(CRUI n);ST IN Mod Combination(CRUI n,CRUI i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& PositivePW(INT EX)NE;TE CE Mod& NonNegativePW(INT EX)NE;US COants = COantsForMod;}; US MP = Mod

; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(RS(MO(n))){}TE CE Mod& Mod::OP=(Mod n)NE{m_n = MO(n.m_n);RE *TH;}TE CE Mod& Mod::OP+=(CO Mod& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE CE Mod& Mod::OP-=(CO Mod& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE CE Mod& Mod::OP*=(CO Mod& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy));RE *TH;}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE TE CE Mod& Mod::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod(2).NonNegativePW(MO(n));}TE TE CE Mod& Mod::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE TE CE Mod Mod::OP^(INT EX)CO{RE MO(Mod(*TH).PW(MO(EX)));}TE TE CE Mod Mod::OP<<(INT n)CO{RE MO(Mod(*TH)<<= MO(n));}TE TE CE Mod Mod::OP>>(INT n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE TE CE Mod& Mod::PositivePW(INT EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE Mod& Mod::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE TE CE Mod& Mod::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(ll(MO(EX %= COants::g_M_minus))* COants::g_order_minus_1_neg %COants::g_M_minus):NonNegativePW(MO(EX));}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CRUI n){AS(n < COants::g_memory_LE);ST Mod memory[COants::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRUI n){if(M <= n){RE zero();}AS(n < COants::g_memory_LE);ST Mod memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRUI n){ST Mod memory[COants::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(uint n)NE{Mod n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod PW(Mod n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN IS& OP>>(IS& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN OS& OP<<(OS& os,CO Mod& n){RE os << n.RP();} #define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash::OP()(CO MOD& n)CO{ST CO hash h;RE h(n.RP());} TE DC_OF_HASH(Mod); TE DF_OF_HASH_FOR_MOD(Mod); #endif // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN