class Comb: def __init__(self, N, mod = 998244353): self.n = N self.mod = mod self.fac = [0] * (self.n + 1) self.invf = [0] * (self.n + 1) self.inv = [0] * (self.n + 1) self.fac[0] = 1 self.fac[1] = 1 self.invf[0] = 1 self.invf[1] = 1 self.inv[1] = 1 for i in range(2, self.n + 1): self.fac[i] = self.fac[i - 1] * i % self.mod self.inv[i] = self.mod - self.inv[self.mod % i] * (self.mod // i) % self.mod self.invf[i] = self.invf[i - 1] * self.inv[i] % self.mod def F(self, N): return self.fac[N] def C(self, N, K): return self.invf[K] * self.invf[N - K] % self.mod * self.fac[N] % self.mod def P(self, N, K): return self.invf[N - K] * self.fac[N] % self.mod def H(self, N, K): return self.invf[K] * self.invf[N - 1] % self.mod * self.fac[N + K - 1] % self.mod # Created by hiro1729 on 2024-09-08 # Copyright (c) 2024 RTWP from typing import List from math import * # O(sqrt(N)) def isprime_slow(N: int): if N == 1: return False if N == 2: return True for i in range(2, isqrt(N) + 1): if N % i == 0: return False return True # O(sqrt(N)) def divisors(N: int): divisors = [] for i in range(1, isqrt(N) + 1): if N % i == 0: divisors.append(i) if i * i != N: divisors.append(N // i) divisors.sort() return divisors # O(N) def linear_sieve(N: int): lpf = [-1] * (N + 1) prime_list = [] for d in range(2, N + 1): if lpf[d] == -1: lpf[d] = d prime_list.append(d) for p in prime_list: if p * d > N or p > lpf[d]: break lpf[p * d] = p return (lpf, prime_list) # please call linear_sieve(N) before calling this # O(log(N)) def prime_factorize_sieve(N: int, lpf: List[int]): prime_factors = [] while N > 1: prime_factors.append(lpf[N]) N //= lpf[N] return prime_factors # O(sqrt(N)) def prime_factorize(N: int): M = isqrt(N) prime_factors = [] for i in range(2, M + 1): if i > M: break if N % i == 0: while N % i == 0: prime_factors.append(i) N //= i M = isqrt(N) if N > 1: prime_factors.append(N) return prime_factors com = Comb(2000000) Q = int(input()) cnt = 0 for _ in range(Q): A, B = map(int, input().split()) cnt += len(prime_factorize(A)) if 0 <= B - 1 <= cnt - 1: print(com.C(cnt - 1, B - 1)) else: print(0)