// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") // #define INTERACTIVE #include using namespace std; namespace templates { // type using ll = long long; using ull = unsigned long long; using Pii = pair; using Pil = pair; using Pli = pair; using Pll = pair; template using pq = priority_queue; template using qp = priority_queue, greater>; // clang-format off #define vec(T, A, ...) vector A(__VA_ARGS__); #define vvec(T, A, h, ...) vector> A(h, vector(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector>> A(h1, vector>(h2, vector(__VA_ARGS__))); // clang-format on // for loop #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) // declare and input // clang-format off #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___); #define VEC(T, A, n) vector A(n); inp(A); #define VVEC(T, A, n, m) vector> A(n, vector(m)); inp(A); // clang-format on // const value const ll MOD1 = 1000000007; const ll MOD9 = 998244353; const double PI = acos(-1); // other macro #if !defined(RIN__LOCAL) && !defined(INTERACTIVE) #define endl "\n" #endif #define spa ' ' #define len(A) ll(A.size()) #define all(A) begin(A), end(A) // function vector stoc(string &S) { int n = S.size(); vector ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } string ctos(vector &S) { int n = S.size(); string ret = ""; for (int i = 0; i < n; i++) ret += S[i]; return ret; } template auto min(const T &a) { return *min_element(all(a)); } template auto max(const T &a) { return *max_element(all(a)); } template auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } template T sum(vector &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template vector compression(vector X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } // input and output namespace io { // __int128_t std::ostream &operator<<(std::ostream &dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char *d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // vector template istream &operator>>(istream &is, vector &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << ' '; } return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (auto &a : A) is >> a; return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // pair template istream &operator>>(istream &is, pair &A) { is >> A.first >> A.second; return is; } template ostream &operator<<(ostream &os, pair &A) { os << A.first << ' ' << A.second; return os; } // vector> template istream &operator>>(istream &is, vector> &A) { for (size_t i = 0; i < A.size(); i++) { is >> A[i]; } return is; } template ostream &operator<<(ostream &os, vector> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // tuple template struct TuplePrint { static ostream &print(ostream &os, const T &t) { TuplePrint::print(os, t); os << ' ' << get(t); return os; } }; template struct TuplePrint { static ostream &print(ostream &os, const T &t) { os << get<0>(t); return os; } }; template ostream &operator<<(ostream &os, const tuple &t) { TuplePrint::print(os, t); return os; } // io functions void FLUSH() { cout << flush; } void print() { cout << endl; } template void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(std::forward(tail)...); } template void prisep(vector &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template void priend(T A, S end) { cout << A << end; } template void prispa(T A) { priend(A, spa); } template bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template void inp(T &...a) { (cin >> ... >> a); } } // namespace io using namespace io; // read graph vector> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector> edges(n, vector()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template vector>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector>> edges(n, vector>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template vector>> read_wtree(int n, int indexed = 1) { return read_wedges(n, n - 1, false, indexed); } // yes / no namespace yesno { // yes inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } // no inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // possible inline bool possible(bool f = true) { cout << (f ? "possible" : "impossible") << endl; return f; } inline bool Possible(bool f = true) { cout << (f ? "Possible" : "Impossible") << endl; return f; } inline bool POSSIBLE(bool f = true) { cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // impossible inline bool impossible(bool f = true) { cout << (!f ? "possible" : "impossible") << endl; return f; } inline bool Impossible(bool f = true) { cout << (!f ? "Possible" : "Impossible") << endl; return f; } inline bool IMPOSSIBLE(bool f = true) { cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // Alice Bob inline bool Alice(bool f = true) { cout << (f ? "Alice" : "Bob") << endl; return f; } inline bool Bob(bool f = true) { cout << (f ? "Bob" : "Alice") << endl; return f; } // Takahashi Aoki inline bool Takahashi(bool f = true) { cout << (f ? "Takahashi" : "Aoki") << endl; return f; } inline bool Aoki(bool f = true) { cout << (f ? "Aoki" : "Takahashi") << endl; return f; } } // namespace yesno using namespace yesno; } // namespace templates using namespace templates; template struct BIT { int n; std::vector tree; BIT(int n) : n(n) { tree.assign(n + 1, T(0)); } BIT() = default; T _sum(int i) { i++; T res = T(0); while (i > 0) { res += tree[i]; i -= i & -i; } return res; } T sum(int l, int r) { return _sum(r - 1) - _sum(l - 1); } T sum(int r) { return _sum(r - 1); } T get(int i) { return _sum(i) - _sum(i - 1); } void add(int i, T x) { i++; while (i <= n) { tree[i] += x; i += i & -i; } } int lower_bound(T x) { int pos = 0; int plus = 1; while (plus * 2 <= n) plus *= 2; while (plus > 0) { if ((pos + plus <= n) && (tree[pos + plus] < x)) { x -= tree[pos + plus]; pos += plus; } plus >>= 1; } return pos; } }; struct CentroidDecomposition { public: int n; std::vector par; // 重心分解した木の直接の親 std::vector depth; // 重心分解した木の深さ std::vector size; // 頂点iを重心とする木のサイズ std::vector childcnt; // 頂点iの子の個数 std::vector> pars; // pars[i][j] := 頂点iの先祖のうち,深さがjである頂点 std::vector> edges; std::vector> centroids; // centroids[i] := 深さiの重心の一覧 std::vector> treeind; // treeind[i][j] := 頂点jが深さiの重心の何番目の部分木か std::vector> cent_depth; // cent_depth[i][j] := 頂点jと深さiの重心からの距離 CentroidDecomposition() = default; CentroidDecomposition(int n) : n(n) { edges.resize(n); pars.resize(n); childcnt.resize(n); par.assign(n, -1); depth.assign(n, -1); size.assign(n, -1); } void add_edge(int u, int v) { edges[u].push_back(v); edges[v].push_back(u); } void read_edges(int indexed = 1, int m = -1) { if (m == -1) m = n - 1; while (m--) { int u, v; std::cin >> u >> v; add_edge(u - indexed, v - indexed); } } void build() { dfs(0, -1); } std::pair>>, std::vector>> dist_freq() { std::vector>> dist(n); std::vector> disttot(n); for (int i = 0; i < n; i++) { std::stack>> st; disttot[i] = {1}; dist[i].assign(childcnt[i], {0}); st.push({0, {i, -1}}); while (!st.empty()) { int d = st.top().first + 1; int pos = st.top().second.first; int bpos = st.top().second.second; st.pop(); for (auto npos : edges[pos]) { if (npos == bpos || depth[npos] < depth[i]) continue; st.push({d, {npos, pos}}); if (int(disttot[i].size()) == d) disttot[i].push_back(1); else disttot[i][d]++; int j = treeind[depth[i]][npos]; if (int(dist[i][j].size()) == d) dist[i][j].push_back(1); else dist[i][j][d]++; } } } return {dist, disttot}; } std::pair>>, std::vector>> dist_freq_ll() { std::vector>> dist(n); std::vector> disttot(n); for (int i = 0; i < n; i++) { std::stack>> st; disttot[i] = {1}; dist[i].assign(childcnt[i], {0}); st.push({0, {i, -1}}); while (!st.empty()) { int d = st.top().first + 1; int pos = st.top().second.first; int bpos = st.top().second.second; st.pop(); for (auto npos : edges[pos]) { if (npos == bpos || depth[npos] < depth[i]) continue; st.push({d, {npos, pos}}); if (int(disttot[i].size()) == d) disttot[i].push_back(1); else disttot[i][d]++; int j = treeind[depth[i]][npos]; if (int(dist[i][j].size()) == d) dist[i][j].push_back(1); else dist[i][j][d]++; } } } return {dist, disttot}; } std::vector> cent_ind_dist(int u) { std::vector> ret; // uの親 + u の各重心の {頂点番号,何番目の部分木か,距離} ret.emplace_back(u, -1, 0); for (int d = int(pars[u].size()) - 1; d >= 0; d--) { ret.emplace_back(pars[u][d], treeind[d][u], cent_depth[d][u]); } return ret; }; private: void dfs(int pos, int bpos, int d = 0, int c = -1) { std::stack st; st.push(pos); std::stack route; int sz = 0; if (int(treeind.size()) <= d) treeind.push_back(std::vector(n, -1)); if (int(cent_depth.size()) <= d) cent_depth.push_back(std::vector(n, -1)); if (d != 0) cent_depth[d - 1][pos] = 1; while (!st.empty()) { int pos = st.top(); st.pop(); if (bpos != -1) pars[pos].push_back(bpos); depth[pos] = -2; route.push(pos); sz++; if (d >= 1) treeind[d - 1][pos] = c; for (auto npos : edges[pos]) { if (depth[npos] == -1) { st.push(npos); if (d != 0) cent_depth[d - 1][npos] = cent_depth[d - 1][pos] + 1; } } } int g = -1; while (!route.empty()) { int pos = route.top(); route.pop(); size[pos] = 1; depth[pos] = -1; bool isg = true; for (auto npos : edges[pos]) { if (depth[npos] == -1) { size[pos] += size[npos]; if (size[npos] * 2 > sz) isg = false; } } if (isg && 2 * size[pos] >= sz) { g = pos; } } if (int(centroids.size()) == d) centroids.push_back({g}); else centroids[d].push_back(g); size[g] = sz; par[g] = bpos; depth[g] = d; cent_depth[d][g] = 0; if (sz != 1) { int c = 0; for (auto npos : edges[g]) { if (depth[npos] == -1) dfs(npos, g, d + 1, c++); } childcnt[g] = c; } } }; void solve() { INT(n); CentroidDecomposition G(n); G.read_edges(); G.build(); STRING(S); ll ans = 0; BIT bit(2 * n + 10); int zero = n + 5; fori(d, G.centroids.size()) { vec(ll, C, n, 0); vec(bool, used, n, false); for (auto c : G.centroids[d]) { used[c] = true; int mi = 0; int ma = 0; vec(int, inds, 0); inds.push_back(c); vec(int, ss, 0); C[c] = S[c] == '1' ? 1 : -1; for (auto sc : G.edges[c]) { if (G.depth[sc] < G.depth[c]) continue; ss.push_back(len(inds)); stack st; st.push(sc); used[sc] = true; C[sc] = C[c] + (S[sc] == '1' ? 1 : -1); while (!st.empty()) { int pos = st.top(); inds.push_back(pos); st.pop(); for (auto npos : G.edges[pos]) { if (!used[npos] and G.depth[npos] > G.depth[c]) { st.push(npos); C[npos] = C[pos] + (S[npos] == '1' ? 1 : -1); chmin(mi, C[npos]); chmax(ma, C[npos]); used[npos] = true; } } } } ss.push_back(len(inds)); for (auto i : inds) { bit.add(C[i] + zero, 1); } for (auto i : inds) { int d = S[c] == '1' ? -C[i] + 1 : -C[i] - 1; ans += bit.sum(d + zero + 1, 2 * n + 10); } for (auto i : inds) { bit.add(C[i] + zero, -1); } fori(i, 1, len(ss)) { int bi = ss[i - 1]; int ni = ss[i]; fori(j, bi, ni) { bit.add(C[inds[j]] + zero, 1); } fori(j, bi, ni) { int d = S[c] == '1' ? -C[inds[j]] + 1 : -C[inds[j]] - 1; ans -= bit.sum(d + zero + 1, 2 * n + 10); } fori(j, bi, ni) { bit.add(C[inds[j]] + zero, -1); } } } } for (auto s : S) { if (s == '1') ans++; } ans /= 2; print(ans); } int main() { #ifndef INTERACTIVE std::cin.tie(0)->sync_with_stdio(0); #endif // std::cout << std::fixed << std::setprecision(12); int t; t = 1; // std::cin >> t; while (t--) solve(); return 0; } // // // // #pragma GCC target("avx2") // // #pragma GCC optimize("O3") // // #pragma GCC optimize("unroll-loops") // // #define INTERACTIVE // // #include "kyopro-cpp/template.hpp" // // #include "data_structure/BIT.hpp" // #include "tree/CentroidDecomposition.hpp" // // void solve() { // INT(n); // CentroidDecomposition G(n); // G.read_edges(); // G.build(); // STRING(S); // // ll ans = 0; // BIT bit(2 * n + 10); // int zero = n + 5; // fori(d, G.centroids.size()) { // vec(ll, C, n, 0); // vec(bool, used, n, false); // for (auto c : G.centroids[d]) { // used[c] = true; // int mi = 0; // int ma = 0; // vec(int, inds, 0); // inds.push_back(c); // vec(int, ss, 0); // C[c] = S[c] == '1' ? 1 : -1; // for (auto sc : G.edges[c]) { // if (G.depth[sc] < G.depth[c]) continue; // ss.push_back(len(inds)); // stack st; // st.push(sc); // used[sc] = true; // C[sc] = C[c] + (S[sc] == '1' ? 1 : -1); // while (!st.empty()) { // int pos = st.top(); // inds.push_back(pos); // st.pop(); // for (auto npos : G.edges[pos]) { // if (!used[npos] and G.depth[npos] > G.depth[c]) { // st.push(npos); // C[npos] = C[pos] + (S[npos] == '1' ? 1 : -1); // chmin(mi, C[npos]); // chmax(ma, C[npos]); // used[npos] = true; // } // } // } // } // ss.push_back(len(inds)); // // for (auto i : inds) { // bit.add(C[i] + zero, 1); // } // for (auto i : inds) { // int d = S[c] == '1' ? -C[i] + 1 : -C[i] - 1; // ans += bit.sum(d + zero + 1, 2 * n + 10); // } // for (auto i : inds) { // bit.add(C[i] + zero, -1); // } // // fori(i, 1, len(ss)) { // int bi = ss[i - 1]; // int ni = ss[i]; // fori(j, bi, ni) { // bit.add(C[inds[j]] + zero, 1); // } // fori(j, bi, ni) { // int d = S[c] == '1' ? -C[inds[j]] + 1 : -C[inds[j]] - 1; // ans -= bit.sum(d + zero + 1, 2 * n + 10); // } // fori(j, bi, ni) { // bit.add(C[inds[j]] + zero, -1); // } // } // } // } // for (auto s : S) { // if (s == '1') ans++; // } // ans /= 2; // print(ans); // } // // int main() { // #ifndef INTERACTIVE // std::cin.tie(0)->sync_with_stdio(0); // #endif // // std::cout << std::fixed << std::setprecision(12); // int t; // t = 1; // // std::cin >> t; // while (t--) solve(); // return 0; // }