#ifdef NACHIA #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include #include #include #include using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(int i=0; i void chmin(A& l, const A& r){ if(r < l) l = r; } template void chmax(A& l, const A& r){ if(l < r) l = r; } #include //#include #include #include namespace nachia{ template class CsrArray{ public: struct ListRange{ using iterator = typename std::vector::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector m_list; std::vector m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector> items){ CsrArray res; res.m_n = n; std::vector buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector list, std::vector pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } int xorval() const { return from ^ to; } }; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){ Graph res(n, undirected, m); for(int i=0; i> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i induce(int num, const std::vector& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i indexV(n), newV(num); for(int i=0; i= 0) indexV[i] = newV[mapping[i]]++; std::vector res; res.reserve(num); for(int i=0; i= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray getEdgeIndexArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i::Construct(numVertices(), src); } CsrArray getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray getAdjacencyArray(bool undirected) const { std::vector> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray::Construct(numVertices(), src); } CsrArray getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector m_e; bool m_isUndir; }; } // namespace nachia namespace nachia{ auto EulerianTrail(const Graph& graph){ struct Result { int length; int start; std::vector edges; } res; res.length = -1; auto adj = graph.getEdgeIndexArray(); int n = graph.numVertices(); int m = graph.numEdges(); if(m == 0){ res.length = 0; res.start = 0; return res; } int s = -1; if(graph.isUndirected()){ int codd = 0; for(int v=0; v 2) return res; if(codd == 2) for(int v=0; v di(n); for(auto [v,w] : graph) di[w]++; int codd = 0; for(int v=0; v 2) return res; if(codd == 2) for(int v=0; v di[v]) s = v; } if(s < 0) for(int v=0; v 0) s = v; std::vector ep(n); std::vector edges(m); std::vector alive(m, true); int pp = 0; int pq = m; int v = s; while(pp < pq){ if(ep[v] >= adj[v].size()){ if(pp == 0) return res; edges[--pq] = edges[--pp]; v ^= graph[edges[pq]].xorval(); } else { int e = adj[v][ep[v]++]; if(!alive[e]) continue; alive[e] = false; edges[pp++] = e; v ^= graph[e].xorval(); } } res.length = m; res.start = s; res.edges = std::move(edges); return res; } } // namespace nachia using Modint = atcoder::static_modint<998244353>; using namespace std; void testcase(){ int N; cin >> N; if(N <= 4){ cout << string("0110").substr(0, N) << '\n'; return; } string et = ""; int p = 0; while((2 << p) + p <= N) p++; p--; { nachia::Graph graph(1< A; vector used(2< nx(1< B; int lcnt = N - int(et.size()); int ap = 0; for( ; ap= 0){ int nxs = nx[s]; B.push_back(s * 2 + (nxs % 2)); nx[s] = -1; s = nxs; lcnt--; if(lcnt == 0) break; } if(lcnt == 0) break; B.push_back(a); } A = vector(A.begin() + ap, A.end()); for(auto b : B) A.push_back(b); //for(auto a : A) cout << a << " "; //cout << endl; et = ""; for(int i=p; i>=1; i--) et.push_back('0' + (A[0] >> i) % 2); for(int a : A) et.push_back('0' + a % 2); } //{ // auto sa = atcoder::suffix_array(et); // auto lcp = atcoder::lcp_array(et, sa); // for(auto a : lcp) cout << a << " "; // cout << endl; // vector cnt(N+1); // for(auto x : lcp) cnt[x] += 1; // for(auto a : cnt) cout << a << " "; // cout << endl; //} cout << et << '\n'; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T; rep(t,T) testcase(); return 0; }