package yukicoder; import java.util.Scanner; public class Main { public static void main(String[] args) { new Main().solver(); } void solver() { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int[][] a = new int[N][N]; int[] b = new int[N]; for (int i = 0; i < N; i++) { a[sc.nextInt() - 1][i]++; } for (int i = 0; i < N; i++) { b[i] = sc.nextInt(); } int[][] c = new int[N][2 * N]; for (int i = 0; i < N; i++) { c[i] = convolute(a[i], b); } for (int i = 0; i < 2 * N-1; i++) { long sum=0; for(int j=0;j0)sum++; } // System.out.println(sum); if (sum % 2 == 0) { System.out.println("EVEN"); } else { System.out.println("ODD"); } } } public static double[][] doFFT(double[] srcRe, double[] srcIm) { int n = srcRe.length; if (Integer.bitCount(n) != 1) return null; int[] rev = reverseBitOrder(n); double[] dstRe = new double[n]; double[] dstIm = new double[n]; for (int i = 0; i < n; i++) { dstRe[i] = srcRe[rev[i]]; dstIm[i] = srcIm[rev[i]]; } for (int s = 1; s <= n; s <<= 1) { int nt = s >>> 1; int bs = nt; double wRe = 1.0; double wIm = 0.0; double uRe = Math.cos(Math.PI / bs); double uIm = -Math.sin(Math.PI / bs); for (int t = 0; t < nt; t++) { for (int j = t; j < n; j += s) { int jp = j + bs; double re = dstRe[jp] * wRe - dstIm[jp] * wIm; double im = dstRe[jp] * wIm + dstIm[jp] * wRe; dstRe[jp] = dstRe[j] - re; dstIm[jp] = dstIm[j] - im; dstRe[j] += re; dstIm[j] += im; } double nwRe = wRe * uRe - wIm * uIm; double nwIm = wRe * uIm + wIm * uRe; wRe = nwRe; wIm = nwIm; } } return new double[][] { dstRe, dstIm }; } protected static int[] reverseBitOrder(int n) { int[] ret = new int[n]; ret[0] = 0; for (int i = 1, h = n >> 1; i < n; i <<= 1, h >>>= 1) { for (int j = 0; j < i; j++) { ret[j + i] = ret[j] + h; } } return ret; } public static int[] convolute(int[] a, int[] b) { int m = Integer.highestOneBit(a.length | b.length) << 2; prepareFFT(m); double[][] fa = doFFFT(a, m); double[][] fb = doFFFT(b, m); double[][] fced = new double[2][m]; for (int i = 0; i < m; i++) { fced[0][i] = (fa[0][i] * fb[0][i] - fa[1][i] * fb[1][i]) / m; fced[1][i] = (fa[0][i] * fb[1][i] + fa[1][i] * fb[0][i]) / -m; } double[][] ced = doFFFT(fced[0], fced[1]); int[] ret = new int[m]; for (int i = 0; i < m; i++) { ret[i] = (int) Math.round(ced[0][i]); } return ret; } static int[] rev; static double[] coss; public static void prepareFFT(int n) { rev = reverseBitOrder(n); coss = new double[n + 1]; for (int i = 0; i <= n >>> 1; i++) { coss[n - i] = coss[i] = Math.cos(Math.PI * i / (n >>> 1)); } } public static double[][] doFFFT(int[] srcRe, int n) { int m = srcRe.length; double[] dstRe = new double[n]; double[] dstIm = new double[n]; for (int i = 0; i < n; i++) { if (rev[i] < m) { dstRe[i] = srcRe[rev[i]]; } } for (int s = 1; s <= n; s <<= 1) { int nt = s >>> 1; int bs = nt; for (int t = 0; t < nt; t++) { double wRe = coss[t * (n / s)]; double wIm = coss[(n >>> 2) + t * (n / s)]; for (int j = t; j < n; j += s) { int jp = j + bs; double re = dstRe[jp] * wRe - dstIm[jp] * wIm; double im = dstRe[jp] * wIm + dstIm[jp] * wRe; dstRe[jp] = dstRe[j] - re; dstIm[jp] = dstIm[j] - im; dstRe[j] += re; dstIm[j] += im; } } } return new double[][] { dstRe, dstIm }; } public static double[][] doFFFT(double[] srcRe, double[] srcIm) { int n = srcRe.length; double[] dstRe = new double[n]; double[] dstIm = new double[n]; for (int i = 0; i < n; i++) { dstRe[i] = srcRe[rev[i]]; dstIm[i] = srcIm[rev[i]]; } for (int s = 2; s <= n; s <<= 1) { int nt = s >>> 1; int bs = nt; for (int t = 0; t < nt; t++) { double wRe = coss[t * (n / s)]; double wIm = coss[(n >>> 2) + t * (n / s)]; for (int j = t; j < n; j += s) { int jp = j + bs; double re = dstRe[jp] * wRe - dstIm[jp] * wIm; double im = dstRe[jp] * wIm + dstIm[jp] * wRe; dstRe[jp] = dstRe[j] - re; dstIm[jp] = dstIm[j] - im; dstRe[j] += re; dstIm[j] += im; } } } return new double[][] { dstRe, dstIm }; } }