#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace atcoder; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T &a, T b) { return ((a>b) ? (a = b, true) : (false));} #define rep(i,s,n) for(long long i=s;i<(long long)(n);i++) #define rrep(i,s,n) for(long long i=n-1;i>=s;i--) const long long inf = 1LL<<60; typedef long long ll; typedef long double ld; typedef unsigned long long ull; //pairのsecondでソートsort(p.begin(),p.end(),cmp) #define cmp [](pair a, pair b){return a.second P; typedef pair > PP; #define rll ll,vector,greater #define rP P,vector

,greater

const long double pi = 3.14159265358979; typedef unsigned long long ull; #define vll vector #define vvll vector> #define vmint vector #define vvmint vector> #define vvch vector> #define vch vector #define vstring vector #define rPP PP,vector,greater #define vP vector

#define vvP vector> #define vPP vector #define all(x) x.begin(), x.end() //UNIQUE(x) xをソートして値の被りがないようにする #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int pc(ll x) { return __builtin_popcount(x); } //ビット列にどれだけ1がたっているかを求める pop count //逆順のlower_bound(単調減少関数で自分以下を二分探索)するときは`ll index = lower_bound(all(inv), -a[i], greater()) - inv.begin();`, 逆からみたlis的なやつが作れる //オバフロしない計算はa > inf - b および a > inf / bでとってね //半分全列挙は前の方を(siz+1)/2ででかくする //using mint = atcoder::modint, main関数でmint::set_mod(M)とすると任意modのmintにできる //mapでも auto it = mp.lower_bound(key)としてlower_boundが使用できる while(it != mp.end())でループすることもできる //解いてる時に詰まったらできるだけ数式や図に変換してみる!! using mint = modint998244353; int main() { int x,k; cin >> x >> k; if(x == 0 || x == 100) { cout << 0 << endl; return 0; } mint ans = 0; for(int S=0;S<1<<(2*k);S++) { mint tmp = 1; rep(i,0,2*k) { if((S>>i)&1) tmp = tmp * x / 100; //表 else tmp = tmp * (x-100) / 100; //裏 } int maxi = -1, cur = 0, can = true; rep(i,0,2*k) { if((S>>i)&1) cur++, chmax(maxi, cur); else { cur--; if(cur < 0) can = false; } } if(cur != 0 || can == false) continue; ans += tmp * maxi; } cout << ans.val() << endl; }