#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace atcoder; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T &a, T b) { return ((a>b) ? (a = b, true) : (false));} #define rep(i,s,n) for(long long i=s;i<(long long)(n);i++) #define rrep(i,s,n) for(long long i=n-1;i>=s;i--) const long long inf = 1LL<<60; typedef long long ll; typedef long double ld; typedef unsigned long long ull; //pairのsecondでソートsort(p.begin(),p.end(),cmp) #define cmp [](pair a, pair b){return a.second P; typedef pair > PP; #define rll ll,vector,greater #define rP P,vector

,greater

const long double pi = 3.14159265358979; typedef unsigned long long ull; #define vll vector #define vvll vector> #define vmint vector #define vvmint vector> #define vvch vector> #define vch vector #define vstring vector #define rPP PP,vector,greater #define vP vector

#define vvP vector> #define vPP vector #define all(x) x.begin(), x.end() //UNIQUE(x) xをソートして値の被りがないようにする #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int pc(ll x) { return __builtin_popcount(x); } //ビット列にどれだけ1がたっているかを求める pop count //逆順のlower_bound(単調減少関数で自分以下を二分探索)するときは`ll index = lower_bound(all(inv), -a[i], greater()) - inv.begin();`, 逆からみたlis的なやつが作れる //オバフロしない計算はa > inf - b および a > inf / bでとってね //半分全列挙は前の方を(siz+1)/2ででかくする //using mint = atcoder::modint, main関数でmint::set_mod(M)とすると任意modのmintにできる //mapでも auto it = mp.lower_bound(key)としてlower_boundが使用できる while(it != mp.end())でループすることもできる //解いてる時に詰まったらできるだけ数式や図に変換してみる!! using mint = modint998244353; const ll MAX = 101010; const ll MOD = 998244353; long long fac[MAX], finv[MAX], inv[MAX]; // テーブルを作る前処理 void COMinit() { fac[0] = fac[1] = 1; //累積積 finv[0] = finv[1] = 1; //逆元の累積積 inv[1] = 1; //逆元 for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(ll n, ll k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } int main() { int n,x; cin >> n >> x; COMinit(); vector dp(n,0), c(n,0); mint p = 100 - x, q = x; p /= 100; q /= 100; vector powp(n+1,0); dp[n-1] = 1; c[0] = 1; powp[0] = 1; rep(i,1,n) c[i] = c[i-1] * q; rep(i,0,n) { c[i] /= fac[i]; powp[i+1] = powp[i] * p; } mint ans = 0; rep(i,1,n+1) { rep(j,0,n+1-i) ans += dp[j]; rep(j,n+1-i,n) dp[j] = 0; rep(j,0,n) dp[j] *= fac[j]; reverse(all(dp)); vector ndp = convolution(dp, c); while(ndp.size() > n) ndp.pop_back(); reverse(all(ndp)); rep(j,0,n) ndp[j] *= powp[j], ndp[j] /= fac[j]; dp = ndp; } cout << ans.val() << endl; }