namespace AtCoder; #nullable enable using System.Numerics; readonly record struct ModInt : IEqualityOperators, IAdditiveIdentity, IAdditionOperators, IUnaryNegationOperators, ISubtractionOperators, IMultiplicativeIdentity, IMultiplyOperators, IDivisionOperators { int V { get; init; } public const int Mod = 998244353; public ModInt(long value) { var v = value % Mod; if (v < 0) v += Mod; V = (int)v; } ModInt(int value) { V = value; } public static implicit operator ModInt(long v) => new(v); public static implicit operator int(ModInt modInt) => modInt.V; public static ModInt operator +(ModInt a, ModInt b) { var v = a.V + b.V; if (v >= Mod) v -= Mod; return new(v); } public static ModInt operator -(ModInt a) => new(a.V == 0 ? 0 : Mod - a.V); public static ModInt operator -(ModInt a, ModInt b) { var v = a.V - b.V; if (v < 0) v += Mod; return new(v); } public static ModInt operator *(ModInt a, ModInt b) => new((int)((long)a.V * b.V % Mod)); public static ModInt operator /(ModInt a, ModInt b) { if (b == 0) throw new DivideByZeroException(); var (d, x, _) = ExtendedGcd(b.V, Mod); if (d > 1) throw new DivideByZeroException(); return x * a.V; } public ModInt Power(long p) { if (p < 0) return (MultiplicativeIdentity / V).Power(-p); long res = 1; long k = V; while (p > 0) { if ((p & 1) > 0) res = res * k % Mod; k = k * k % Mod; p >>= 1; } return res; } static (long d, long x, long y) ExtendedGcd(long a, long b) { if (b == 0) return (a, 1, 0); var (d, x, y) = ExtendedGcd(b, a % b); return (d, y, x - a / b * y); } public static ModInt AdditiveIdentity => new(0); public static ModInt MultiplicativeIdentity => new(1); public override string ToString() => V.ToString(); } static class FactorialExtensions { static ModInt[] fac = Array.Empty(); static ModInt[] inv = Array.Empty(); const uint Capacity = 1 << 24; static void Resize(uint n) { if (n < fac.Length) return; var s = 1; while (s < n && s < Capacity) s <<= 1; fac = new ModInt[s + 1]; fac[0] = 1; for (var i = 1; i <= s; i++) fac[i] = fac[i - 1] * i; inv = new ModInt[s + 1]; inv[s] = fac[0] / fac[s]; for (var i = s; i > 0; i--) inv[i - 1] = inv[i] * i; } public static ModInt Factorial(this int n) { Resize((uint)Math.Abs(n)); return n < 0 ? inv[-n] : fac[n]; } public static ModInt C(this int n, int r) { if (r < 0 || n < r) return 0; if (n <= Capacity) return Factorial(n) * Factorial(r - n) * Factorial(-r); if (n - r < r) return C(n, n - r); ModInt res = 1; for (var i = n; i > n - r; i--) res *= i; return res * Factorial(-r); } public static ModInt P(this int n, int r) => C(n, r) * Factorial(r); public static ModInt H(this int n, int r) => C(n + r - 1, r); } class Prime { readonly int[] sieve; public readonly List Primes = new(); public Prime(int n) { if (n <= 3) n = 3; sieve = new int[n + 1]; var (d, i, primes) = (2, 5, Primes); primes.Add(2); primes.Add(3); var span = sieve.AsSpan(); span[1] = 1; for (var j = 2; j <= n; j += 2) span[j] = 2; for (var j = 3; j <= n; j += 3) span[j] = 3; while (i <= n) { if (span[i] == 0) { primes.Add(i); for (var j = i; j <= n; j += i) span[j] = i; } i += d; d ^= 6; } } public bool IsPrime(int x) { if (x < 2) return false; if (x < sieve.Length) return sieve[x] == x; foreach (long p in Primes) { if (p * p > x) return true; if (x % p == 0) return false; } throw new Exception(); } // descending public List Factorize(int x) { var factors = new List(); while (sieve[x] > 1) { factors.Add(sieve[x]); x /= sieve[x]; } return factors; } public List Divisors(int x) { var factors = Factorize(x); var powerLists = new List>(); var last = 1; foreach (var factor in factors) { if (factor != last) { powerLists.Add(new List(new int[] { 1 })); last = factor; } var powers = powerLists[^1]; powers.Add(powers[^1] * factor); } var divisors = new List(); void Enumerate(int index, int divisor) { if (index == powerLists.Count) { divisors.Add(divisor); return; } foreach (var power in powerLists[index]) Enumerate(index + 1, divisor * power); } Enumerate(0, 1); return divisors; } } static class Extensions { public static T[] Repeat(this int time, Func F) => Enumerable.Range(0, time).Select(_ => F()).ToArray(); } class AtCoder { object? Solve() { var q = Int(); var prime = new Prime(100000); var ans = new long[q]; var k = 0; for (var i = 0; i < q; i++) { var a = Int(); var b = Int(); k += prime.Factorize(a).Count; ans[i] = (k - 1).C(b - 1); } Out(ans); return null; } public static void Main() => new AtCoder().Run(); public void Run() { var res = Solve(); if (res != null) { if (res is bool yes) res = yes ? "Yes" : "No"; sw.WriteLine(res); } sw.Flush(); } string[] input = Array.Empty(); int iter = 0; readonly StreamWriter sw = new(Console.OpenStandardOutput()) { AutoFlush = false }; string String() { while (iter >= input.Length) (input, iter) = (Console.ReadLine()!.Split(' '), 0); return input[iter++]; } T Input() where T : IParsable => T.Parse(String(), null); int Int() => Input(); void Out(object? x, string? separator = null) { separator ??= Environment.NewLine; if (x is System.Collections.IEnumerable obj and not string) { var firstLine = true; foreach (var item in obj) { if (!firstLine) sw.Write(separator); firstLine = false; sw.Write(item); } } else sw.Write(x); sw.WriteLine(); } }