def Matprod(A, B, mod, N): temp = [0] * N*N for i in range(N): for j in range(N): ij = i * N + j for k in range(N): temp[ij] += A[i*N+k] * B[k*N+j] temp[ij] %= mod return temp def Matpow_Linear(A, M, mod, N): Mat = [0] * N*N for i in range(N): Mat[i*N+i] = 1 while M: if M & 1: Mat = Matprod(Mat, A, mod, N) A = Matprod(A, A, mod, N) M >>= 1 return Mat from collections import * N, M, K = map(int, input().split()) D = defaultdict(list) for i in range(1, M + 1): D[M//i].append(i) L = sorted(D.keys()) N2 = len(L) A = [0] * N2 * N2 for i in range(N2): for j in range(N2): if abs(L[i] - L[j]) <= K: A[i*N2+j] = len(D[L[i]]) mod = 998244353 A = Matpow_Linear(A, N-1, mod, N2) ans = 0 vec = [len(D[L[i]]) for i in range(N2)] for i in range(N2): for j in range(N2): ans += A[i*N2+j] * vec[j] ans %= mod print(ans)