#[allow(unused_imports)] use std::{collections::{HashSet, HashMap, BTreeSet, BTreeMap, BinaryHeap, VecDeque}, cmp::{Reverse, PartialOrd, Ordering, max, min}, mem::swap}; macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); let mut next = || { iter.next().unwrap() }; input_inner!{next, $($r)*} }; ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } #[derive(Debug, PartialEq, PartialOrd)] struct OrderedFloat(f64); impl Eq for OrderedFloat {} impl Ord for OrderedFloat { fn cmp(&self, other: &Self) -> Ordering{ self.partial_cmp(&other).unwrap() } } const INF: i64 = 1<<60; #[derive(Debug)] struct QuadTree{ tree: Vec, } #[derive(Debug, Copy, Clone)] struct Node{ t: usize, point: (i64, i64), mix: i64, mxx: i64, miy: i64, mxy: i64, leaf: usize, } impl QuadTree { fn new(mix: i64, mxx: i64, miy: i64, mxy: i64)->Self{ let root = Node{t: 0, point: (INF, INF), mix, mxx, miy, mxy, leaf: 0}; QuadTree{tree: vec![root]} } fn insert(&mut self, pointer: usize, p: i64, q: i64){ let mut node = self.tree[pointer]; let t = node.t; match t{ 0 => { self.tree[pointer].point = (p, q); self.tree[pointer].t = 1; }, 1 => { self.tree[pointer].t = 2; let (px, py) = node.point; node.t = 2; self.divide(pointer, &mut node); let nex1 = self.down(px, py, &node).unwrap(); self.insert(nex1, px, py); let nex2 = self.down(p, q, &node).unwrap(); self.insert(nex2, p, q); }, _ => { let nex = self.down(p, q, &node).unwrap(); self.insert(nex, p, q); } } } fn down(&mut self, p: i64, q: i64, node: &Node)->Option{ if node.t < 2{return None;} let mut nex = node.leaf; let (mx, my) = ((node.mxx+node.mix)/2, (node.mxy+node.miy)/2); if p >= mx { nex += 1; } if q >= my { nex += 2; } Some(nex) } fn divide(&mut self, pointer: usize, node: &mut Node){ let nex = self.tree.len(); let (mx, my) = ((node.mxx+node.mix)/2, (node.mxy+node.miy)/2); self.tree[pointer].leaf = nex; node.leaf = nex; self.tree.push(Node{t: 0, point: (INF, INF), mix: node.mix, mxx: mx, miy: node.miy, mxy: my, leaf: 0}); self.tree.push(Node{t: 0, point: (INF, INF), mix: mx, mxx: node.mxx, miy: node.miy, mxy: my, leaf: 0}); self.tree.push(Node{t: 0, point: (INF, INF), mix: node.mix, mxx: mx, miy: my, mxy: node.mxy, leaf: 0}); self.tree.push(Node{t: 0, point: (INF, INF), mix: mx, mxx: node.mxx, miy: my, mxy: node.mxy, leaf: 0}); } fn query(&mut self, pointer: usize, p: i64, q: i64, res: &mut ((i64, i64), i64)){ let node = self.tree[pointer]; if node.t == 2{ let leaf = node.leaf; for i in 0..4{ let nex = self.tree[leaf+i]; if possible_dist(p, q, &nex) < res.1{ self.query(leaf+i, p, q, res); } } } else if node.t == 1{ let (x, y) = node.point; let d = (p-x)*(p-x)+(q-y)*(q-y); if d < res.1{ *res = ((x, y), d); } } } } fn dist_calc(p: &(i64, i64), q: &(i64, i64))->f64{ let (x1, y1) = p; let (x2, y2) = q; (((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)) as f64).sqrt() } fn possible_dist(p: i64, q: i64, node: &Node)->i64{ let (mix, mxx, miy, mxy) = (node.mix, node.mxx, node.miy, node.mxy); let f1 = mix <= p && p <= mxx; let f2 = miy <= q && q <= mxy; if f1 && f2{ return 0; } else if f1{ return (miy-q).abs().min((q-mxy).abs()) } else if f2{ return (mix-p).abs().min((mxx-p).abs()) } let x = (miy-q).abs().min((q-mxy).abs()); let y = (mix-p).abs().min((mxx-p).abs()); return x*x+y*y } fn main() { input!{ n: usize, m: usize, k: usize, p: (i64, i64), s: [(i64, i64); n], t: [(i64, i64); k], v: f64, e: [(usize1, usize1); m], } let p = (p.0, p.1); let mut edge = vec![Vec::new(); n]; for &(u, v) in &e{ edge[u].push(v); edge[v].push(u); } let mut dic = HashMap::new(); for i in 0..n{ dic.insert((s[i].0, s[i].1), i); } let mut quadtree = QuadTree::new(-100000, 100001, -100000, 100001); for &(u, v) in &s{ quadtree.insert(0, u, v); } let mut hotel = ((0, 0), INF); quadtree.query(0, p.0, p.1, &mut hotel); let ss = dic[&(hotel.0.0, hotel.0.1)]; let pre = (hotel.1 as f64).sqrt(); let mut time = vec![1e60; n]; time[ss] = 0.; let mut used = vec![false; n]; let mut heap = BinaryHeap::new(); heap.push(Reverse((OrderedFloat(0.), ss))); while let Some(Reverse((OrderedFloat(w), x))) = heap.pop(){ if used[x]{continue} used[x] = true; for &nex in &edge[x]{ if used[nex]{continue} let dx = dist_calc(&s[nex], &s[x])/v; if time[nex] > w+dx{ time[nex] = time[x]+dx; heap.push(Reverse((OrderedFloat(time[nex]), nex))); } } } let mut ans = 0.; for i in 0..k{ let mut st = ((0, 0), INF); let (x, y) = t[i]; quadtree.query(0, x, y, &mut st); let d1 = dist_calc(&st.0, &t[i]); let t1 = time[dic[&(st.0.0, st.0.1)]]; ans += (dist_calc(&p, &t[i]).min(pre+d1+t1))*2.; } println!("{}", ans); }