mod = 998244353 inv_2 = (mod + 1) // 2 n = 10**6 inv = [1 for j in range(n+1)] for a in range(2,n+1): # ax + py = 1 <=> rx + p(-x-qy) = -q => x = -(inv[r]) * (p//a) (r = p % a) res = (mod - inv[mod%a]) * (mod // a) inv[a] = res % mod def fps_pow_sparse(f,k,deg = -1): # F = f^k,fF' = kFf' if k == 0: return [1] + [0] * (deg - 1) if len(f) == 0: return [0] * deg if deg == -1: deg = f[-1][0] i,a = f[0] inv_0 = pow(a,-1,mod) for l in range(len(f)): j,aa = f[l] j -= i aa = aa * inv_0 % mod f[l] = (j,aa) if i * k > deg: return [0] * deg F = [1] for n in range(deg - i * k - 1): c = 0 res = 0 for j,aa in f: if j == 0: continue if n - j + 1 >= 0: res = (res + F[n - j + 1] * (j * aa % mod) % mod) % mod if n - j + 1 >= 0: c = (c - aa * (F[n - j + 1] * (n - j + 1) % mod) % mod) % mod c = (c + res * k % mod) % mod c = c * inv[n + 1] % mod F.append(c) F = [0] * (i * k) + F a = pow(a,k,mod) for i in range(deg): F[i] = F[i] * a % mod return F N = int(input()) f = [(0,1),(1,1),(2,1)] f = fps_pow_sparse(f,N,N + 1) ans = f[N] - 1 ans = ans * inv_2 % mod print(ans)