#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE /* #define SUBMIT_ONLY */ #define DEBUG_OUTPUT // #define SAMPLE_CHECK dummy #endif #ifdef INCLUDE_MAIN IN VO Solve() { CEXPR( int , bound_Ai , 1e6 ); HeapLeastDivisor ld{ bound_Ai + 1 }; CIN( int , N ); MultipleZetaTransform zt{ ld , MP(1) , bound_Ai + 1 }; REPEAT( N ){ CIN_ASSERT( Ai , 1 , bound_Ai ); auto div = EnumerateDivisor( ld , Ai ); auto range = [&]( const int& ) -> const vector& { return div; }; zt.Add( Ai , 1 + zt.InitialSegmentSum( 1 ) - zt.InverseImageSum( Id , range , 1 ) ); } RETURN( zt.InitialSegmentSum( 1 ) ); } REPEAT_MAIN(1); #else /* INCLUDE_MAIN */ #ifdef INCLUDE_SUB /* COMPAREに使用。圧縮時は削除する。*/ MP Naive( const int& N , const int& M , const int& K , const bool& experiment = false ) { MP answer{}; return answer; } /* COMPAREに使用。圧縮時は削除する。*/ MP Answer( const ll& N , const ll& M , const ll& K ) { MP answer{}; return answer; } /* 圧縮時は中身だけ削除する。*/ IN VO Experiment() { } /* 圧縮時は中身だけ削除する。*/ IN VO SmallTest() { } /* 圧縮時は中身だけ削除する。*/ IN VO RandomTest( const int& test_case_num ) { } #define INCLUDE_MAIN #include __FILE__ #else /* INCLUDE_SUB */ #ifdef INCLUDE_LIBRARY /* - BFS (6KB) Geometry/Graph/Algorithm/BreadthFirstSearch/compress.txt - AdicExhausiveSearch (11KB) Geometry/Graph/Algorithm/BreadthFirstSearch/AdicExhausiveSearch/compress.txt - BitExhausiveSearch (10KB) Geometry/Graph/Algorithm/BreadthFirstSearch/BitExhausiveSearch/compress.txt - ZeroOneBreadthFirstSearch (4KB) Geometry/Graph/Algorithm/BreadthFirstSearch/01/compress.txt - BIT (5KB) SetTheory/DirectProduct/AffineSpace/BIT/compress.txt - IntervalAdd (9KB) SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt - IntervalMax (9KB) SetTheory/DirectProduct/AffineSpace/BIT/IntervalMax/compress.txt - CoordinateCompress (3KB) SetTheory/DirectProduct/CoordinateCompress/compress.txt - DFS (6KB) Geometry/Graph/Algorithm/DepthFirstSearch/compress.txt - Tree (11KB) Geometry/Graph/Algorithm/DepthFirstSearch/Tree/compress.txt - DifferenceSequence (9KB) SetTheory/DirectProduct/AffineSpace/DifferenceSequence/compress.txt - TwoDimensional (5KB) SetTheory/DirectProduct/AffineSpace/DifferenceSequence/TwoDimensional/compress.txt - Dijkstra (6KB) Geometry/Graph/Algorithm/Dijkstra/compress.txt - MinimumCostFlow (16KB) Geometry/Graph/Algorithm/Dijkstra/Potentialised/MinimumCostFlow/compress.txt - Divisor/Prime/Factorisation (4KB) Arithmetic/Divisor/Enumeration/compress.txt - Knapsack (8KB) Combinatorial/KnapsackProblem/compress.txt - LineSubset (7KB) SetTheory/Line/compress.txt - NonNegative (15KB) SetTheory/Line/NonNegative/compress.txt - Bounded (15KB) SetTheory/Line/Bounded/compress.txt - Compressed (15KB) SetTheory/Line/Compressed/compress.txt - SqrtDecomposition - Monoid (5KB) SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Monoid/compress.txt - CommutativeDual (6KB) SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/Dual/Commutative/compress.txt - IntervalMultiplyLazy (18KB) SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/IntervalMultiply/compress.txt - TruncatedPolynomial (31KB) Polynomial/Truncate/compress.txt - NonProth (34KB) Polynomial/Truncate/NonProth/compress.txt - Matrix (6KB) LinearAlgebra/compress.txt - TwoByTwo/TwoByOne (9KB) LinearAlgebra/TwoByOne/compress.txt - Rank (3KB) LinearAlgebra/Rank/Mod/compress.txt - UnionFind (3KB) Geometry/Graph/Algorithm/UnionFindForest/compress.txt */ /* VVV 常設でないライブラリは以下に挿入する。*/ #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Divisor/Enumeration/a_Body.hpp" #else // PrimeEnumeration: // val_limit = 316 ≒ sqrt(1e5) -> length = 65 // val_limit = 448 ≒ sqrt(2e5) -> length = 86 // val_limit = 1e5 -> length = 9592 // val_limit = 1e6 -> length = 78498 // nの素因数分解:PrimeFactorisation(CO PE/LD& pe,CO INT& n) O(√n/log n)/O(log n) // nの素羃への分解:PrimePowerFactorisation(CO PE/LD& pe,CO INT& n) O(√n/log n)/O(log n) // CountDivisor( n ): // n <= 1e3 -> answer <= 32 // n <= 1e4 -> answer <= 64 // n <= 1e5 -> answer <= 128 // n <= 1e6 -> answer <= 256 // nの約数数え上げ:CountDivisor(CO PE/LD& pe,INT n) O(√n/log n)/O(log n) // nの約数辞書順列挙:EnumerateDivisor(CO PE/LD& pe,INT n) O(√n/log n)/O(log n/log log n) // SZ未満の数の約数全列挙:TotalEnumerateDivisor(CRI SZ) O(size log size) TE CL PrimeEnumeration{PU:bool m_is_composite[val_limit];int m_val[le_max];int m_le;CE PrimeEnumeration();IN CRI OP[](CRI i)CO;CE CRI Get(CRI i)CO;CE CO bool& IsComposite(CRI n)CO;CE CRI le()CO NE;}; TE CE PrimeEnumeration::PrimeEnumeration():m_is_composite(),m_val(),m_le(0){for(int i = 2;i < val_limit;i++){if(! m_is_composite[i]){if(i <=(val_limit - 1)/ i){for(int j = i * i;j < val_limit;j += i){m_is_composite[j]= true;}}m_val[m_le++]= i;if(m_le >= le_max){break;}}}}TE IN CRI PrimeEnumeration::OP[](CRI i)CO{AS(0 <= i && i < m_le);RE m_val[i];}TE CE CRI PrimeEnumeration::Get(CRI i)CO{RE m_val[i];}TE CE CO bool& PrimeEnumeration::IsComposite(CRI n)CO{RE m_is_composite[n];}TE CE CRI PrimeEnumeration::le()CO NE{RE m_le;} CL HeapPrimeEnumeration{PU:int m_val_limit;VE m_is_composite;VE m_val;int m_le;IN HeapPrimeEnumeration(CRI val_limit);IN CRI OP[](CRI i)CO;IN CRI Get(CRI i)CO;IN bool IsComposite(CRI n)CO;IN CRI le()CO NE;}; IN HeapPrimeEnumeration::HeapPrimeEnumeration(CRI val_limit):m_val_limit(val_limit),m_is_composite(m_val_limit),m_val(),m_le(0){for(int i = 2;i < m_val_limit;i++){if(! m_is_composite[i]){if(i <=(m_val_limit - 1)/ i){for(int j = i * i;j < val_limit;j += i){m_is_composite[j]= true;}}m_val.push_back(i);}}m_le = m_val.SZ();}IN CRI HeapPrimeEnumeration::OP[](CRI i)CO{AS(0 <= i && i < m_le);RE m_val[i];}IN CRI HeapPrimeEnumeration::Get(CRI i)CO{RE OP[](i);}IN bool HeapPrimeEnumeration::IsComposite(CRI n)CO{AS(0 <= n && n < m_val_limit);RE m_is_composite[n];}IN CRI HeapPrimeEnumeration::le()CO NE{RE m_le;} TE auto CheckPE(CO PE& pe)-> decltype(pe.IsComposite(0),true_type());TE false_type CheckPE(...);TE CE bool IsPE = decltype(CheckPE(declval()))(); TE CL LeastDivisor{PU:int m_val[val_limit];CE LeastDivisor()NE;IN CRI OP[](CRI i)CO;CE CRI Get(CRI i)CO;}; TE CE LeastDivisor::LeastDivisor()NE:m_val{}{for(int d = 2;d < val_limit;d++){if(m_val[d]== 0){for(int n = d;n < val_limit;n += d){m_val[n]== 0?m_val[n]= d:d;}}}}TE IN CRI LeastDivisor::OP[](CRI i)CO{AS(0 <= i && i < val_limit);RE m_val[i];}TE CE CRI LeastDivisor::Get(CRI i)CO{RE m_val[i];} CL HeapLeastDivisor{PU:int m_val_limit;VE m_val;IN HeapLeastDivisor(CRI val_limit)NE;IN CRI OP[](CRI i)CO;IN CRI Get(CRI i)CO;}; IN HeapLeastDivisor::HeapLeastDivisor(CRI val_limit)NE:m_val_limit(val_limit),m_val(m_val_limit){for(int d = 2;d < m_val_limit;d++){if(m_val[d]== 0){for(int n = d;n < m_val_limit;n += d){m_val[n]== 0?m_val[n]= d:d;}}}}IN CRI HeapLeastDivisor::OP[](CRI i)CO{AS(0 <= i && i < m_val_limit);RE m_val[i];}IN CRI HeapLeastDivisor::Get(CRI i)CO{RE m_val[i];} TE auto PrimeFactorisation(CO PE& pe,INT n)-> enable_if_t,pair,VE>>{VE P{};VE E{};CRI le = pe.le();for(int i = 0;i < le;i++){auto& p = pe[i];if(n % p == 0){int e = 1;WH((n /= p)% p == 0){e++;}P.push_back(p);E.push_back(e);}else if(n / p < p){break;}}if(n != 1){P.push_back(n);E.push_back(1);}RE{MO(P),MO(E)};}TE auto PrimeFactorisation(CO LD& ld,INT n)-> enable_if_t,pair,VE>>{VE P{};VE E{};if(n > 1){P.push_back(ld[n]);E.push_back(1);n /= ld[n];}WH(n > 1){if(P.back()!= ld[n]){P.push_back(ld[n]);E.push_back(1);}else{E.back()++;}n /= ld[n];}RE{MO(P),MO(E)};}TE auto PrimePowerFactorisation(CO PE& pe,INT n)-> enable_if_t,tuple,VE,VE>>{VE P{};VE E{};VE Q{};CRI le = pe.le();for(int i = 0;i < le;i++){auto& p = pe[i];if(n % p == 0){int e = 1;INT q = p;WH((n /= p)% p == 0){e++;q *= p;}P.push_back(p);E.push_back(e);Q.push_back(q);}else if(n / p < p){break;}}if(n != 1){P.push_back(n);E.push_back(1);Q.push_back(n);}RE{MO(P),MO(E),MO(Q)};}TE auto PrimePowerFactorisation(CO LD& ld,INT n)-> enable_if_t,tuple,VE,VE>>{VE P{};VE E{};VE Q{};if(n > 1){P.push_back(ld[n]);E.push_back(1);Q.push_back(ld[n]);n /= ld[n];}WH(n > 1){if(P.back()!= ld[n]){P.push_back(ld[n]);E.push_back(1);Q.push_back(ld[n]);}else{Q.back()*= ld[n];E.back()++;}n /= ld[n];}RE{MO(P),MO(E),MO(Q)};} TE INT CountDivisorBody(VE& E)NE{CO int LE = E.SZ();INT AN = 1;for(int i = 0;i < LE;i++){AN *= ++E[i];}RE AN;}TE INT CountDivisor(CO PE& pe,INT n)NE{auto[P,E]= PrimeFactorisation(pe,MO(n));RE CountDivisorBody(E);} TE VE EnumerateDivisorBody(CO VE& P,VE& E){CO int le = P.SZ();VE AN(CountDivisorBody(E),INT(1));int SZ = 1;for(int i = 0;i < le;i++){auto& P_i = P[i];auto& E_i = E[i];INT q = 1;int j_shift = 0;for(int e = 1;e < E_i;e++){q *= P_i;j_shift += SZ;for(int j = 0;j < SZ;j++){AN[j + j_shift]= AN[j]* q;}}SZ *= E_i;}RE AN;}TE VE EnumerateDivisor(INT n)NE{auto[P,E]= PrimeFactorisation(MO(n));RE EnumerateDivisorBody(P,E);}TE auto EnumerateDivisor(CO PE& pe,INT n)-> enable_if_t,VE>{auto[P,E]= PrimeFactorisation(pe,MO(n));RE EnumerateDivisorBody(P,E);}TE auto EnumerateDivisor(CO LD& ld,INT n)-> enable_if_t,VE>{VE P{};VE E{};WH(n > 1){auto& p = ld[n];int e = 1;WH((n /= p)% p == 0){e++;}P.push_back(p);E.push_back(e);}RE EnumerateDivisorBody(P,E);}TE VE> TotalEnumerateDivisor(CO INT& SZ)NE{VE> AN(SZ);for(INT d = 1;d < SZ;d++){for(INT n = 0;n < SZ;n += d){AN[n].push_back(d);}}RE AN;} #endif #ifdef DEBUG #include "c:/Users/user/Documents/Programming/Mathematics/Combinatorial/ZetaTransform/Divisor/a_Body.hpp" #else TE VE TotalMoeviusFunction(CO LD& ld,CO INT& n_max){VE AN(n_max + 1,1);AN[0]= 0;for(int i = 2;i <= n_max;i++){auto& p = ld[i];CO int j = i / p;AN[i]= j % p == 0?0:-AN[j];}RE AN;} TE CL VirtualSemirng{PU:VI U Sum(U u0,CO U& u1)= 0;VI CO U& Zero()CO NE = 0;VI U Product(U u0,CO U& u1)= 0;VI MONOID& AdditiveMonoid()NE = 0;VI SEMIGROUP& MultiplicativeSemigroup()NE = 0;US type = U;};TE CL AbstractSemirng:VI PU VirtualSemirng{PU:MONOID m_R0;SEMIGROUP m_R1;IN AbstractSemirng(MONOID R0,SEMIGROUP R1);IN U Sum(U u0,CO U& u1);IN CO U& Zero()CO NE;IN U Product(U u0,CO U& u1);IN MONOID& AdditiveMonoid()NE;IN SEMIGROUP& MultiplicativeSemigroup()NE;};TE AbstractSemirng(MONOID R0,SEMIGROUP R1)-> AbstractSemirng,MONOID,SEMIGROUP>;TE CL Semirng:PU AbstractSemirng,MultiplicativeMagma>{PU:IN Semirng();}; TE IN AbstractSemirng::AbstractSemirng(MONOID R0,SEMIGROUP R1):m_R0(MO(R0)),m_R1(MO(R1)){}TE IN Semirng::Semirng():AbstractSemirng,MultiplicativeMagma>(AdditiveMonoid(),MultiplicativeMagma()){}TE IN U AbstractSemirng::Sum(U u0,CO U& u1){RE m_R0.Sum(MO(u0),u1);}TE IN CO U& AbstractSemirng::Zero()CO NE{RE m_R0.Zero();}TE IN U AbstractSemirng::Product(U u0,CO U& u1){RE m_R1.Product(MO(u0),u1);}TE IN MONOID& AbstractSemirng::AdditiveMonoid()NE{RE m_R0;}TE IN SEMIGROUP& AbstractSemirng::MultiplicativeSemigroup()NE{RE m_R1;} TE CL VirtualRing:VI PU VirtualSemirng{PU:VI U Inverse(CO U& u)= 0;VI CO U& One()CO NE = 0;IN GROUP& AdditiveGroup()NE;IN MONOID& MultiplicativeMonoid()NE;};TE CL AbstractRing:VI PU VirtualRing,PU AbstractSemirng{PU:IN AbstractRing(GROUP R0,MONOID R1);IN U Inverse(CO U& u);IN CO U& One()CO NE;};TE CL Ring:PU AbstractRing,MultiplicativeMonoid>{PU:IN Ring(CO U& one_U);}; TE IN AbstractRing::AbstractRing(GROUP R0,MONOID R1):AbstractSemirng(MO(R0),MO(R1)){}TE IN Ring::Ring(CO U& one_U):AbstractRing,MultiplicativeMonoid>(AdditiveGroup(),MultiplicativeMonoid(one_U)){}TE IN U AbstractRing::Inverse(CO U& u){RE TH->m_R0.Inverse(u);}TE IN CO U& AbstractRing::One()CO NE{RE TH->m_R1.One();}TE IN GROUP& VirtualRing::AdditiveGroup()NE{RE TH->AdditiveMonoid();}TE IN MONOID& VirtualRing::MultiplicativeMonoid()NE{RE TH->MultiplicativeSemigroup();} TE CL Algebra:VI PU VirtualRSet,PU Ring{PU:IN Algebra(U one);US Ring::type;IN U Action(CO R& r,U u);IN U PW(U u,CO R& r)= delete;}; TE IN Algebra::Algebra(U one):Ring(MO(one)){}TE IN U Algebra::Action(CO R& r,U u){RE MO(u *= r);} TE CL VirtualZetaTransform{PU:GRAPH m_G;GRAPH_INV m_G_inv;Z_ALG m_R;VE m_val;IN VirtualZetaTransform(GRAPH G,GRAPH_INV G_inv,Z_ALG R);IN VirtualZetaTransform(GRAPH G,GRAPH_INV G_inv,Z_ALG R,VE a,CO bool& transformed = false);TE IN VO Initialise(Args&&... args);IN VO Add(CO T& t,CO U& u);IN VO TotalAdd(CO U& u);IN VirtualZetaTransform& OP+=(CO VirtualZetaTransform& a);IN VO TotalMultiply(CO U& u);IN VirtualZetaTransform& OP*=(CO VirtualZetaTransform& a);U OP[](CO T& t);IN U Get(CO T& t);IN CO U& InitialSegmentSum(CO T& t);TE U InverseImageSum(F_INV_MAX&& f_inv_max,RANGE&& range,CO S& s);TE IN CO U& InitialSegmentInverseImageSum(F_INV_MAX&& f_inv_max,CO S& s);VI int Moevius(CO T& t0,CO T& t1);};TE VirtualZetaTransform(GRAPH&,GRAPH_INV&,Z_ALG)-> VirtualZetaTransform,GRAPH,GRAPH_INV,inner_t,Z_ALG>;TE CL AbstractZetaTransform:PU VirtualZetaTransform{PU:MU m_mu;TE IN AbstractZetaTransform(GRAPH G,GRAPH_INV G_inv,Z_ALG R,MU mu,Args&&... args);IN int Moevius(CO T& t0,CO T& t1);};TE AbstractZetaTransform(GRAPH&,GRAPH_INV&,Z_ALG,MU)-> AbstractZetaTransform,GRAPH,GRAPH_INV,inner_t,Z_ALG,MU>; TE IN VirtualZetaTransform::VirtualZetaTransform(GRAPH G,GRAPH_INV G_inv,Z_ALG R):m_G(MO(G)),m_G_inv(MO(G_inv)),m_R(MO(R)),m_val(m_G.SZ(),m_R.Zero()){ST_AS(is_same_v> && is_same_v> && is_same_v>);AS(m_G_inv.SZ()== m_G.SZ());}TE IN VirtualZetaTransform::VirtualZetaTransform(GRAPH G,GRAPH_INV G_inv,Z_ALG R,VE a,CO bool& transformed):m_G(MO(G)),m_G_inv(MO(G_inv)),m_R(MO(R)),m_val(MO(a)){ST_AS(is_same_v> && is_same_v> && is_same_v>);CRI SZ = m_G.SZ();AS(m_G_inv.SZ()== SZ && int(m_val.SZ())== SZ);if(!transformed){a = m_val;for(int i = 0;i < SZ;i++){U& m_val_i = m_val[i];auto&& sub_i = m_G.Edge(i);for(auto& j:sub_i){j == i?m_val_i:m_val_i = m_R.Sum(MO(m_val_i),a[j]);}}}}TE TE IN AbstractZetaTransform::AbstractZetaTransform(GRAPH G,GRAPH_INV G_inv,Z_ALG R,MU mu,Args&&... args):VirtualZetaTransform(MO(G),MO(G_inv),MO(R),forward(args)...),m_mu(MO(mu)){ST_AS(is_invocable_r_v);}TE TE VO VirtualZetaTransform::Initialise(Args&&... args){VirtualZetaTransform temp{m_G,m_G_inv,m_R,forward(args)...};m_val = MO(temp.m_val);}TE VO VirtualZetaTransform::Add(CO T& t,CO U& u){auto&& sup = m_G_inv.Edge(t);for(auto& s:sup){U& m_val_i = m_val[m_G.Enumeration_inv(s)];m_val_i = m_R.Sum(MO(m_val_i),u);}}TE IN VO VirtualZetaTransform::TotalAdd(CO U& u){CRI SZ = m_G.SZ();for(int i = 0;i < SZ;i++){U& m_val_i = m_val[i];m_val_i = m_R.Sum(MO(m_val_i),m_R.ScalarProduct(m_G.Edge(m_G.Enumeration(i)).SZ(),u));}}TE IN VirtualZetaTransform& VirtualZetaTransform::OP+=(CO VirtualZetaTransform& a){CRI SZ = m_G.SZ();for(int i = 0;i < SZ;i++){U& m_val_i = m_val[i];m_val_i = Sum(MO(m_val_i),a.m_val[i]);}RE *TH;}TE IN VO VirtualZetaTransform::TotalMultiply(CO U& u){CRI SZ = m_G.SZ();for(int i = 0;i < SZ;i++){U& m_val_i = m_val[i];m_val_i = m_R.Product(MO(m_val_i),u);}}TE IN VirtualZetaTransform& VirtualZetaTransform::OP*=(CO VirtualZetaTransform& a){CRI SZ = m_G.SZ();for(int i = 0;i < SZ;i++){U& m_val_i = m_val[i];m_val_i = m_R.Product(MO(m_val_i),a.m_val[i]);}RE *TH;}TE U VirtualZetaTransform::OP[](CO T& t){auto&& sub = m_G.Edge(t);U AN = m_R.Zero();CRI SZ = m_G.SZ();for(auto& s:sub){auto&& i = m_G.Enumeration_inv(s);AS(i < SZ);AN = m_R.Sum(MO(AN),m_R.ScalarProduct(Moevius(s,t),m_val[i]));}RE AN;}TE IN U VirtualZetaTransform::Get(CO T& t){RE OP[](t);}TE IN CO U& VirtualZetaTransform::InitialSegmentSum(CO T& t){auto&& i = m_G.Enumeration_inv(t);AS(i < m_G.SZ());RE m_val[i];}TE TE U VirtualZetaTransform::InverseImageSum(F_INV_MAX&& f_inv_max,RANGE&& range,CO S& s){ST_AS(is_invocable_r_v && is_invocable_r_v,RANGE,CO S&>);auto&& t = f_inv_max(s);auto&& sub = range(s);U AN = m_R.Zero();CRI SZ = m_G.SZ();for(auto& s_sub:sub){auto&& t_sub = f_inv_max(s_sub);auto&& i = m_G.Enumeration_inv(t_sub);AS(i < SZ);AN = m_R.Sum(MO(AN),m_R.ScalarProduct(Moevius(t_sub,t),m_val[i]));}RE AN;}TE TE IN CO U& VirtualZetaTransform::InitialSegmentInverseImageSum(F_INV_MAX&& f_inv_max,CO S& s){RE m_val[m_G.Enumeration_inv(f_inv_max(s))];}TE int VirtualZetaTransform::Moevius(CO T& t0,CO T& t1){ST VE> memory(m_G.SZ());auto&& i = m_G.Enumeration_inv(t0);auto&& j = m_G.Enumeration_inv(t1);unordered_map& memory_t0 = memory[i];CO bool found = memory_t0.count(j)== 1;int& AN = memory_t0[j];if(! found){if(i == j){AN = 1;}else{AN = 0;auto&& sub = m_G.Edge(t1);for(auto& s:sub){s == t1?AN:AN -= Moevius(t0,s);}}}RE AN;}TE IN int AbstractZetaTransform::Moevius(CO T& t0,CO T& t1){RE m_mu(t0,t1);} TE CL DivisorMoeviusFunction{PU:VE m_val;IN DivisorMoeviusFunction(CO LD& ld,CRI n_max);IN int OP()(CRI t0,CRI t1);};TE CL MultipleMoeviusFunction{PU:VE m_val;IN MultipleMoeviusFunction(CO LD& ld,CRI n_max);IN int OP()(CRI t0,CRI t1);};TE CL DivisorEdge{PU:CO LD* m_p_ld;IN DivisorEdge(CO LD& ld);IN VE OP()(CRI t);};CL MultipleEdge{PU:int m_SZ;IN MultipleEdge(CRI SZ);IN VE OP()(CRI t);};TE CL AbstractDivisorZetaTransform:PU AbstractZetaTransform>,Graph,U,Z_ALG,DivisorMoeviusFunction>{PU:IN AbstractDivisorZetaTransform(CO LD& ld,Z_ALG R,VE a,CO bool& transformed = false);IN AbstractDivisorZetaTransform(CO LD& ld,Z_ALG R,CRI SZ,VE& a,CO bool& transformed);};TE AbstractDivisorZetaTransform(CO LD&,Z_ALG,Args&&...)-> AbstractDivisorZetaTransform,Z_ALG>;TE CL DivisorZetaTransform:PU AbstractDivisorZetaTransform>{PU:IN DivisorZetaTransform(CO LD& ld,CO U& one,CRI SZ);IN DivisorZetaTransform(CO LD& ld,CO U& one,VE a,CO bool& transformed = false);};TE CL AbstractMultipleZetaTransform:PU AbstractZetaTransform,Graph>,U,Z_ALG,MultipleMoeviusFunction>{PU:IN AbstractMultipleZetaTransform(CO LD& ld,Z_ALG R,VE a,CO bool& transformed = false);IN AbstractMultipleZetaTransform(CO LD& ld,Z_ALG R,CRI SZ,VE& a,CO bool& transformed);};TE AbstractMultipleZetaTransform(CO LD&,Z_ALG,Args&&...)-> AbstractMultipleZetaTransform,Z_ALG>;TE CL MultipleZetaTransform:PU AbstractMultipleZetaTransform>{PU:IN MultipleZetaTransform(CO LD& ld,CO U& one,CRI SZ);IN MultipleZetaTransform(CO LD& ld,CO U& one,VE a,CO bool& transformed = false);}; TE DivisorMoeviusFunction::DivisorMoeviusFunction(CO LD& ld,CRI n_max):m_val(TotalMoeviusFunction(ld,n_max)){}TE MultipleMoeviusFunction::MultipleMoeviusFunction(CO LD& ld,CRI n_max):m_val(TotalMoeviusFunction(ld,n_max)){}TE IN int DivisorMoeviusFunction::OP()(CRI t0,CRI t1){RE m_val[t1 / t0];}TE IN int MultipleMoeviusFunction::OP()(CRI t0,CRI t1){RE m_val[t0 / t1];}TE IN DivisorEdge::DivisorEdge(CO LD& ld):m_p_ld(&ld){}IN MultipleEdge::MultipleEdge(CRI SZ):m_SZ(SZ){}TE IN VE DivisorEdge::OP()(CRI t){AS(0 <= t);VE AN{};RE t == 0?VE(1):EnumerateDivisor(*m_p_ld,t);}IN VE MultipleEdge::OP()(CRI t){AS(0 <= t && t < m_SZ);CO int SZ = t == 0?0:(m_SZ - 1)/ t;VE AN(SZ);for(int i = 0;i < SZ;i++){AN[i]= t *(i + 1);}RE AN;}TE IN AbstractDivisorZetaTransform::AbstractDivisorZetaTransform(CO LD& ld,Z_ALG R,VE a,CO bool& transformed):AbstractDivisorZetaTransform(ld,MO(R),a.SZ(),a,transformed){}TE IN AbstractDivisorZetaTransform::AbstractDivisorZetaTransform(CO LD& ld,Z_ALG R,CRI SZ,VE& a,CO bool& transformed):AbstractZetaTransform>,Graph,U,Z_ALG,DivisorMoeviusFunction>(Graph(SZ,DivisorEdge(ld)),Graph(SZ,MultipleEdge(SZ)),MO(R),DivisorMoeviusFunction(ld,SZ - 1),MO(a),transformed){}TE IN DivisorZetaTransform::DivisorZetaTransform(CO LD& ld,CO U& one,CRI SZ):AbstractDivisorZetaTransform>(ld,Algebra(one),VE(SZ),true){}TE IN DivisorZetaTransform::DivisorZetaTransform(CO LD& ld,CO U& one,VE a,CO bool& transformed):AbstractDivisorZetaTransform>(ld,Algebra(one),MO(a),transformed){}TE IN AbstractMultipleZetaTransform::AbstractMultipleZetaTransform(CO LD& ld,Z_ALG R,VE a,CO bool& transformed):AbstractMultipleZetaTransform(ld,MO(R),a.SZ(),a,transformed){}TE IN AbstractMultipleZetaTransform::AbstractMultipleZetaTransform(CO LD& ld,Z_ALG R,CRI SZ,VE& a,CO bool& transformed):AbstractZetaTransform,Graph>,U,Z_ALG,MultipleMoeviusFunction>(Graph(SZ,MultipleEdge(SZ)),Graph(SZ,DivisorEdge(ld)),MO(R),MultipleMoeviusFunction(ld,SZ - 1),MO(a),transformed){}TE IN MultipleZetaTransform::MultipleZetaTransform(CO LD& ld,CO U& one,CRI SZ):AbstractMultipleZetaTransform>(ld,Algebra(one),VE(SZ),true){}TE IN MultipleZetaTransform::MultipleZetaTransform(CO LD& ld,CO U& one,VE a,CO bool& transformed):AbstractMultipleZetaTransform>(ld,Algebra(one),MO(a),transformed){} #endif /* AAA 常設でないライブラリは以上に挿入する。*/ #define INCLUDE_SUB #include __FILE__ #else /* INCLUDE_LIBRARY */ #ifdef DEBUG #define _GLIBCXX_DEBUG #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 ) #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) ) #ifdef USE_GETLINE #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #else #define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); } #define CIN_A( LL , I , N , ... ) VE __VA_ARGS__; SET_A( I , N , __VA_ARGS__ ) #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); } #define SET_LL( A ) cin >> A #endif #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ ) #define CERR( ... ) #define CERRNS( ... ) #define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL #define CERR_A( I , N , A ) #endif #ifdef REACTIVE #ifdef DEBUG #define RSET( A , ... ) A = __VA_ARGS__ #else #define RSET( A , ... ) cin >> A #endif #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ ) #define ENDL endl #else #define ENDL "\n" #endif #include using namespace std; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = 0.0 , current_time = 0.0; int loop_count = 0 #define CURRENT_TIME ( current_time = static_cast( chrono::duration_cast( chrono::system_clock::now() - watch ).count() / 1000.0 ) ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 ) #define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE #define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); } #define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } } #define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX ) #define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) #define OUTPUT_ARRAY( C , I , N , A ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , I , N ){ C << A[VARIABLE_FOR_OUTPUT_ARRAY] << " \n"[VARIABLE_FOR_OUTPUT_ARRAY==(N)-1]; } #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN() #define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS ) #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ , true ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; CERR( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; } /* 圧縮用 */ #define TE template #define TY typename #define US using #define ST static #define AS assert #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define LE length #define PW Power #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& #define VI virtual #define IS basic_istream #define OS basic_ostream #define ST_AS static_assert #define reMO_CO remove_const #define is_COructible_v is_constructible_v #define rBE rbegin #define reSZ resize /* 型のエイリアス */ #define decldecay_t(VAR)decay_t TE US ret_t = decltype(declval()(declval()...)); TE US inner_t = TY T::type; US uint = unsigned int; US ll = long long; US ull = unsigned long long; US ld = long double; US lld = __float128; TE US T2 = pair; TE US T3 = tuple; TE US T4 = tuple; US path = pair; /* データ構造用 */ TE IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;} TE IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;} TE IN T MU(CO T& t0,CO T& t1){RE t0 * t1;} TE IN CO T& Zero(){ST CO T z{};RE z;} TE IN CO T& One(){ST CO T o = 1;RE o;}TE IN T AdditionInv(CO T& t){RE -t;} TE IN T Id(CO T& v){RE v;} TE IN T Min(CO T& a,CO T& b){RE a < b?a:b;} TE IN T Max(CO T& a,CO T& b){RE a < b?b:a;} /* VVV 常設ライブラリは以下に挿入する。*/ #ifdef DEBUG #include "C:/Users/user/Documents/Programming/Contest/Template/Local/a_Body.hpp" #else /* Random (1KB)*/ ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;} /* Set (1KB)*/ #define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;}; CL is_ordered{PU:is_ordered()= delete;TE ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE ST CE CO bool value = is_same_v< decltype(Check(declval())),true_type >;}; TE US Set = conditional_t>,unordered_set,conditional_t,set,VO>>; /* Tuple (4KB)*/ #define DF_OF_AR_FOR_TUPLE(OPR)TE TY V> IN auto OP OPR ## =(V& t0,CO V& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO tuple& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO tuple& t1){get<0>(t0)OPR ## = get<0>(t1);get<1>(t0)OPR ## = get<1>(t1);get<2>(t0)OPR ## = get<2>(t1);get<3>(t0)OPR ## = get<3>(t1);RE t0;}TE TY V> IN auto OP OPR ## =(V& t0,CO ARG& t1)-> decltype((get<0>(t0),t0))&{get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;RE t0;}TE IN tuple& OP OPR ## =(tuple& t0,CO ARG& t1){get<0>(t0)OPR ## = t1;get<1>(t0)OPR ## = t1;get<2>(t0)OPR ## = t1;get<3>(t0)OPR ## = t1;RE t0;}TE TY V,TY...ARGS,TY ARG> IN auto OP OPR(CO V& t0,CO ARG& t1)-> decldecay_t((get<0>(t0),t0)){auto t = t0;RE MO(t OPR ## = t1);} #define DF_OF_INCREMENT_FOR_TUPLE(INCR)TE TY V> IN auto OP INCR(V& t)-> decltype((get<0>(t),t))&{INCR get<0>(t);INCR get<1>(t);RE t;}TE IN tuple& OP INCR(tuple& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);RE t;}TE IN tuple& OP INCR(tuple& t){INCR get<0>(t);INCR get<1>(t);INCR get<2>(t);INCR get<3>(t);RE t;} TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg);}TE TY V> IN auto OP>>(IS& is,V& arg)-> decltype((get<0>(arg),is))&{RE is >> get<0>(arg)>> get<1>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg);}TE IN IS& OP>>(IS& is,tuple& arg){RE is >> get<0>(arg)>> get<1>(arg)>> get<2>(arg)>> get<3>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg);}TE TY V> IN auto OP<<(OS& os,CO V& arg)-> decltype((get<0>(arg),os))&{RE os << get<0>(arg)<< " " << get<1>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg);}TE IN OS& OP<<(OS& os,CO tuple& arg){RE os << get<0>(arg)<< " " << get<1>(arg)<< " " << get<2>(arg)<< " " << get<3>(arg);}DF_OF_AR_FOR_TUPLE(+);DF_OF_AR_FOR_TUPLE(-);DF_OF_AR_FOR_TUPLE(*);DF_OF_AR_FOR_TUPLE(/);DF_OF_AR_FOR_TUPLE(%);DF_OF_INCREMENT_FOR_TUPLE(++);DF_OF_INCREMENT_FOR_TUPLE(--); #define DF_OF_HASH_FOR_TUPLE(PAIR)TE IN size_t hash>::OP()(CO PAIR& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash h0;ST CO hash h1;RE(h0(get<0>(n))* seed)^ h1(get<1>(n));} TE DC_OF_HASH(tuple);TE DC_OF_HASH(pair);TE DC_OF_HASH(tuple);TE DC_OF_HASH(tuple);TE DC_OF_HASH(tuple); TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO hash h;RE h(get<0>(n));}DF_OF_HASH_FOR_TUPLE(pair);DF_OF_HASH_FOR_TUPLE(tuple);TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash> h01;ST CO hash h2;RE(h01({get<0>(n),get<1>(n)})* seed)^ h2(get<2>(n));}TE IN size_t hash>::OP()(CO tuple& n)CO{ST CO size_t seed =(GetRand(1e3,1e8)<< 1)| 1;ST CO hash> h01;ST CO hash> h23;RE(h01({get<0>(n),get<1>(n)})* seed)^ h23({get<2>(n),get<3>(n)});} /* Vector (2KB)*/ #define DF_OF_COUT_FOR_VE(V)TE IN OS& OP<<(OS& os,CO V& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;} #define DF_OF_AR_FOR_VE(V,OPR)TE IN V& OP OPR ## =(V& a,CO T& t){for(auto& s:a){s OPR ## = t;}RE a;}TE IN V& OP OPR ## =(V& a0,CO V& a1){AS(a0.SZ()<= a1.SZ());auto IT0 = a0.BE(),EN0 = a0.EN();auto IT1 = a1.BE();WH(IT0 != EN0){*(IT0++)OPR ## = *(IT1++);}RE a0;}TE IN V OP OPR(V a,CO U& u){RE MO(a OPR ## = u);} #define DF_OF_INCREMENT_FOR_VE(V,INCR)TE IN V& OP INCR(V& a){for(auto& i:a){INCR i;}RE a;} #define DF_OF_ARS_FOR_VE(V)DF_OF_AR_FOR_VE(V,+);DF_OF_AR_FOR_VE(V,-);DF_OF_AR_FOR_VE(V,*);DF_OF_AR_FOR_VE(V,/);DF_OF_AR_FOR_VE(V,%);DF_OF_INCREMENT_FOR_VE(V,++);DF_OF_INCREMENT_FOR_VE(V,--);TE IN V OP*(CO T& scalar,V v){for(auto& t:v){t *= scalar;}RE MO(v);} DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);DF_OF_ARS_FOR_VE(VE);DF_OF_ARS_FOR_VE(LI);IN VO VariadicResize(CRI SZ){}TE IN VO VariadicResize(CRI SZ,Arg& arg,ARGS&... args){arg.resize(SZ);VariadicResize(SZ,args...);}TE IN auto Get(V& a){RE[&](CRI i = 0)-> CO decldecay_t(a[0])&{RE a[i];};}TE IN VE id(CRI SZ){VE AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}TE VO Sort(VE& a,CO bool& reversed = false){if(reversed){ST auto comp =[](CO T& t0,CO T& t1){RE t1 < t0;};sort(a.BE(),a.EN(),comp);}else{sort(a.BE(),a.EN());}}TE IN VE IndexSort(CO VE& a,CO bool& reversed = false){auto index = id(a.SZ());if(reversed){sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[j]< a[i];});}else{sort(index.BE(),index.EN(),[&](CRI i,CRI j){RE a[i]< a[j];});}RE index;} /* Map (1KB)*/ #define DF_OF_AR_FOR_MAP(MAP,OPR)TE IN MAP& OP OPR ## =(MAP& a,CO pair& v){a[v.first]OPR ## = v.second;RE a;}TE IN MAP& OP OPR ## =(MAP& a0,CO MAP& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE IN MAP OP OPR(MAP a,CO ARG& arg){RE MO(a OPR ## = arg);} #define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%); TE US Map = conditional_t>,unordered_map,conditional_t,map,VO>>; DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map); /* StdStream (2KB)*/ TE IN IS& VariadicCin(IS& is){RE is;}TE IN IS& VariadicCin(IS& is,Arg& arg,ARGS&... args){RE VariadicCin(is >> arg,args...);}TE IN IS& VariadicSet(IS& is,CRI i){RE is;}TE IN IS& VariadicSet(IS& is,CRI i,Arg& arg,ARGS&... args){RE VariadicSet(is >> arg[i],i,args...);}TE IN IS& VariadicGetline(IS& is,CO char& separator){RE is;}TE IN IS& VariadicGetline(IS& is,CO char& separator,Arg& arg,ARGS&... args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}TE IN OS& VariadicCout(OS& os,Arg&& arg){RE os << forward(arg);}TE IN OS& VariadicCout(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCout(os << forward(arg1)<< " ",forward(arg2),forward(args)...);}TE IN OS& VariadicCoutNonSep(OS& os,Arg&& arg){RE os << forward(arg);}TE IN OS& VariadicCoutNonSep(OS& os,Arg1&& arg1,Arg2&& arg2,ARGS&&... args){RE VariadicCoutNonSep(os << forward(arg1),forward(arg2),forward(args)...);}TE IN OS& CoutArray(OS& os,CRI i_start,CRI i_ulim,ARRAY&& a){for(int i = i_start;i < i_ulim;i++){(i == i_start?os:(os << " "))<< a[i];}RE os;} /* Module (6KB)*/ #define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE #define DC_OF_POINT(POINT)IN U& POINT()NE #define DF_OF_CPOINT(POINT)TE IN CO U& VirtualPointedSet::POINT()CO NE{RE Point();} #define DF_OF_POINT(POINT)TE IN U& VirtualPointedSet::POINT()NE{RE Point();} TE CL UnderlyingSet{PU:US type = U;};TE CL VirtualPointedSet:VI PU UnderlyingSet{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE CL PointedSet:VI PU VirtualPointedSet{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE CL VirtualNSet:VI PU UnderlyingSet{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE CL AbstractNSet:VI PU VirtualNSet{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE CL VirtualMagma:VI PU UnderlyingSet{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE CL AdditiveMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL MultiplicativeMagma:VI PU VirtualMagma{PU:IN U Product(U u0,CO U& u1);};TE CL AbstractMagma:VI PU VirtualMagma{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma& OP=(CO AbstractMagma&)NE;IN U Product(U u0,CO U& u1);}; TE IN PointedSet::PointedSet(U b_U):m_b_U(MO(b_U)){}TE IN CO U& PointedSet::Point()CO NE{RE m_b_U;}TE IN U& PointedSet::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE IN AbstractNSet::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v);}TE IN AbstractNSet& AbstractNSet::operator=(CO AbstractNSet&)NE{RE *TH;}TE IN U AbstractNSet::Transfer(CO U& u){RE m_f_U(u);}TE IN U VirtualNSet::Inverse(CO U& u){RE Transfer(u);}TE IN AbstractMagma::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v);}TE IN AbstractMagma& AbstractMagma::OP=(CO AbstractMagma&)NE{RE *TH;}TE IN U AdditiveMagma::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE IN U MultiplicativeMagma::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE IN U AbstractMagma::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE IN U VirtualMagma::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);} TE CL VirtualMonoid:VI PU VirtualMagma,VI PU VirtualPointedSet{};TE CL AdditiveMonoid:VI PU VirtualMonoid,PU AdditiveMagma,PU PointedSet{};TE CL MultiplicativeMonoid:VI PU VirtualMonoid,PU MultiplicativeMagma,PU PointedSet{PU:IN MultiplicativeMonoid(U e_U);};TE CL AbstractMonoid:VI PU VirtualMonoid,PU AbstractMagma,PU PointedSet{PU:IN AbstractMonoid(M_U m_U,U e_U);}; TE IN MultiplicativeMonoid::MultiplicativeMonoid(U e_U):PointedSet(MO(e_U)){}TE IN AbstractMonoid::AbstractMonoid(M_U m_U,U e_U):AbstractMagma(MO(m_U)),PointedSet(MO(e_U)){} TE CL VirtualGroup:VI PU VirtualMonoid,VI PU VirtualPointedSet,VI PU VirtualNSet{};TE CL AdditiveGroup:VI PU VirtualGroup,PU AdditiveMonoid{PU:IN U Transfer(CO U& u);};TE CL AbstractGroup:VI PU VirtualGroup,PU AbstractMonoid,PU AbstractNSet{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);}; TE IN AbstractGroup::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid(MO(m_U),MO(e_U)),AbstractNSet(MO(i_U)){}TE IN U AdditiveGroup::Transfer(CO U& u){RE -u;} TE CL VirtualRSet:VI PU UnderlyingSet{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE CL RegularRSet:VI PU VirtualRSet,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE RegularRSet(MAGMA magma)-> RegularRSet,MAGMA>;TE CL AbstractRSet:VI PU VirtualRSet{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet& OP=(CO AbstractRSet&)NE;IN U Action(CO R& r,U u);};TE CL AbstractModule:PU AbstractRSet,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule,O_U,GROUP>;TE CL Module:VI PU VirtualRSet,PU AdditiveGroup{PU:IN U Action(CO R& r,U u);}; TE IN RegularRSet::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE IN AbstractRSet::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v);}TE IN AbstractModule::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v>);}TE IN AbstractRSet& AbstractRSet::OP=(CO AbstractRSet&)NE{RE *TH;}TE IN U RegularRSet::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE IN U AbstractRSet::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE IN U Module::Action(CO R& r,U u){RE MO(u *= r);}TE IN U VirtualRSet::PW(U u,CO R& r){RE Action(r,MO(u));}TE IN U VirtualRSet::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));} /* Graph (5KB)*/ TE CL VirtualGraph:VI PU UnderlyingSet{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE IN R2 Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t Edge(CO T& t)= 0;TE IN ret_t Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE CL EdgeImplimentation:VI PU VirtualGraph{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t Edge(CO T& t);};TE CL Graph:PU EdgeImplimentation{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE IN Graph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE CL EnumerationGraph:PU EdgeImplimentation,ret_t,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t Enumeration(CRI i);TE IN EnumerationGraph GetGraph(F edge)CO;IN ret_t Enumeration_inv_Body(CO T& t);};TE EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph()(0)),Enum_T,Enum_T_inv,E>;TE CL MemorisationGraph:PU EdgeImplimentation{PU:int m_LE;VE m_memory;Map m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE IN MemorisationGraph GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);}; TE IN EdgeImplimentation::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v && is_COructible_v && is_invocable_v);}TE IN Graph::Graph(CRI SZ,E edge):EdgeImplimentation(SZ,MO(edge)){}TE IN EnumerationGraph::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge):EdgeImplimentation,ret_t,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE IN MemorisationGraph::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v);}TE IN CRI Graph::Enumeration(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration(CRI i){RE m_enum_T(i);}TE IN T MemorisationGraph::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE IN R2 VirtualGraph::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE TE IN R2 VirtualGraph::Enumeration_inv(CO PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE IN CRI Graph::Enumeration_inv_Body(CRI i){RE i;}TE IN ret_t EnumerationGraph::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE IN CRI MemorisationGraph::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}RE m_memory_inv[t];}TE VO VirtualGraph::Reset(){}TE IN VO MemorisationGraph::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE IN CRI EdgeImplimentation::SZ()CO NE{RE m_SZ;}TE IN E& EdgeImplimentation::edge()NE{RE m_edge;}TE IN ret_t EdgeImplimentation::Edge(CO T& t){RE m_edge(t);}TE TE IN ret_t VirtualGraph::Edge(CO PATH& p){RE Edge(get<0>(p));}TE TE IN Graph Graph::GetGraph(F edge)CO{RE Graph(TH->SZ(),MO(edge));}TE TE IN EnumerationGraph EnumerationGraph::GetGraph(F edge)CO{RE EnumerationGraph(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE TE IN MemorisationGraph MemorisationGraph::GetGraph(F edge)CO{RE MemorisationGraph(TH->SZ(),MO(edge));}TE IN CO T& VirtualGraph::Vertex(CO T& t)NE{RE t;}TE TE IN CO T& VirtualGraph::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));} /* Grid (2KB)*/ #define SET_GRID H_minus = H - 1;W_minus = W - 1;HW = ll(H)* W #define SET_HW(h,w)H = h;W = w;SET_GRID #define CIN_HW cin >> H >> W;SET_GRID TE CL GridGraph:PU EnumerationGraph,T2(&)(CRI),int(&)(CO T2&),E>{PU:IN GridGraph(E e);};int H,W,H_minus,W_minus;ll HW;VE grid;char walkable = '.',unwalkable = '#'; IN T2 EnumHW(CRI v){RE{v / W,v % W};}IN int EnumHW_inv(CO T2& ij){auto&[i,j]= ij;RE i * W + j;}TE IN GridGraph::GridGraph(E e):EnumerationGraph,T2(&)(CRI),int(&)(CO T2&),E>(HW,EnumHW,EnumHW_inv,MO(e)){AS(HW >> 31 == 0 && H * W == HW);}VE> EdgeOnGrid(CO T2& v){VE> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(i > 0 && grid[i-1][j]== walkable){AN.push_back({i-1,j});}if(i+1 < H && grid[i+1][j]== walkable){AN.push_back({i+1,j});}if(j > 0 && grid[i][j-1]== walkable){AN.push_back({i,j-1});}if(j+1 < W && grid[i][j+1]== walkable){AN.push_back({i,j+1});}}RE AN;}VE,ll>> WEdgeOnGrid(CO T2& v){VE,ll>> AN{};auto&[i,j]= v;if(grid[i][j]== walkable){if(i>0 && grid[i-1][j]== walkable){AN.push_back({{i-1,j},1});}if(i+1 < H && grid[i+1][j]== walkable){AN.push_back({{i+1,j},1});}if(j>0 && grid[i][j-1]== walkable){AN.push_back({{i,j-1},1});}if(j+1 < W && grid[i][j+1]== walkable){AN.push_back({{i,j+1},1});}}RE AN;}IN VO SetWallStringOnGrid(CRI i,VE& S){if(S.empty()){S.resize(H);}cin >> S[i];AS(int(S[i].SZ())== W);}CO string direction="URDL";IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i < k?2:i > k?0:j < h?1:(AS(j > h),3);}IN int DirectionNumberOnGrid(CO T2& v,CO T2& w){auto&[i,j]= v;auto&[k,h]= w;RE DirectionNumberOnGrid(i,j,k,h);}IN int DirectionNumberOnGrid(CRI v,CRI w){RE DirectionNumberOnGrid(EnumHW(v),EnumHW(w));}IN int ReverseDirectionNumberOnGrid(CRI n){AS(0 <= n && n<4);RE n ^ 2;} /* ConstexprModulo (7KB)*/ CEXPR(uint,P,998244353); #define RP Represent #define DeRP Derepresent TE CE INT Residue(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE CE INT& ResidueP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;} TE CL Mod;TE CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound = 1e6;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE int g_order_minus_1 = M - 2;ST CE int g_order_minus_1_neg = -g_order_minus_1;}; #define SFINAE_FOR_MOD enable_if_t>>* #define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod& n)CO NE #define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod OP OPR(Mod n)CO EX; #define DF_OF_CM_FOR_MOD(OPR)TE CE bool Mod::OP OPR(CO Mod& n)CO NE{RE m_n OPR n.m_n;} #define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE CE Mod Mod::OP OPR(Mod n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE CE Mod OP OPR(T n0,CO Mod& n1)EX{RE MO(Mod(MO(n0))OPR ## = n1);} TE CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod& n)NE;CE Mod(Mod&& n)NE;TE CE Mod(T n)NE;CE Mod& OP=(Mod n)NE;CE Mod& OP+=(CO Mod& n)NE;CE Mod& OP-=(CO Mod& n)NE;CE Mod& OP*=(CO Mod& n)NE;IN Mod& OP/=(Mod n);TE CE Mod& OP<<=(INT n);TE CE Mod& OP>>=(INT n);CE Mod& OP++()NE;CE Mod OP++(int)NE;CE Mod& OP--()NE;CE Mod OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE CE Mod OP^(INT EX)CO;TE CE Mod OP<<(INT n)CO;TE CE Mod OP>>(INT n)CO;CE Mod OP-()CO NE;CE Mod& SignInvert()NE;IN Mod& Invert();TE CE Mod& PW(INT EX);CE VO swap(Mod& n)NE;CE CRUI RP()CO NE;ST CE Mod DeRP(uint n)NE;ST IN CO Mod& Inverse(CRUI n);ST IN CO Mod& Factorial(CRUI n);ST IN CO Mod& FactorialInverse(CRUI n);ST IN Mod Combination(CRUI n,CRUI i);ST IN CO Mod& zero()NE;ST IN CO Mod& one()NE;TE CE Mod& PositivePW(INT EX)NE;TE CE Mod& NonNegativePW(INT EX)NE;US COants = COantsForMod;}; US MP = Mod

; TE CE Mod::Mod()NE:m_n(){}TE CE Mod::Mod(CO Mod& n)NE:m_n(n.m_n){}TE CE Mod::Mod(Mod&& n)NE:m_n(MO(n.m_n)){}TE TE CE Mod::Mod(T n)NE:m_n(Residue(MO(n))){}TE CE Mod& Mod::OP=(Mod n)NE{m_n = MO(n.m_n);RE *TH;}TE CE Mod& Mod::OP+=(CO Mod& n)NE{(m_n += n.m_n)< M?m_n:m_n -= M;RE *TH;}TE CE Mod& Mod::OP-=(CO Mod& n)NE{m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n;RE *TH;}TE CE Mod& Mod::OP*=(CO Mod& n)NE{m_n = MO(ull(m_n)* n.m_n)% M;RE *TH;}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:ResidueP(m_n_copy));RE *TH;}TE IN Mod& Mod::OP/=(Mod n){RE OP*=(n.Invert());}TE TE CE Mod& Mod::OP<<=(INT n){AS(n >= 0);RE *TH *= Mod(2).NonNegativePW(MO(n));}TE TE CE Mod& Mod::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE CE Mod& Mod::OP++()NE{m_n < COants::g_M_minus?++m_n:m_n = 0;RE *TH;}TE CE Mod Mod::OP++(int)NE{Mod n{*TH};OP++();RE n;}TE CE Mod& Mod::OP--()NE{m_n == 0?m_n = COants::g_M_minus:--m_n;RE *TH;}TE CE Mod Mod::OP--(int)NE{Mod n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE TE CE Mod Mod::OP^(INT EX)CO{RE MO(Mod(*TH).PW(MO(EX)));}TE TE CE Mod Mod::OP<<(INT n)CO{RE MO(Mod(*TH)<<= MO(n));}TE TE CE Mod Mod::OP>>(INT n)CO{RE MO(Mod(*TH)>>= MO(n));}TE CE Mod Mod::OP-()CO NE{RE MO(Mod(*TH).SignInvert());}TE CE Mod& Mod::SignInvert()NE{m_n > 0?m_n = M - m_n:m_n;RE *TH;}TE IN Mod& Mod::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COants::g_memory_LE?(m_n = Inverse(m_n).m_n,*TH):((m_n_neg = M - m_n)< COants::g_memory_LE)?(m_n = M - Inverse(m_n_neg).m_n,*TH):NonNegativePW(COants::g_order_minus_1);}TE TE CE Mod& Mod::PositivePW(INT EX)NE{Mod PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE TE CE Mod& Mod::NonNegativePW(INT EX)NE{RE EX == 0?(m_n = 1,*TH):PositivePW(MO(EX));}TE TE CE Mod& Mod::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(ll(MO(EX %= COants::g_M_minus))* COants::g_order_minus_1_neg %COants::g_M_minus):NonNegativePW(MO(EX));}TE CE VO Mod::swap(Mod& n)NE{std::swap(m_n,n.m_n);}TE IN CO Mod& Mod::Inverse(CRUI n){AS(n < M);ST VE> memory ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(DeRP(M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M));LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::Factorial(CRUI n){if(M <= n){RE zero();}ST VE> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* LE_curr);LE_curr++;}RE memory[n];}TE IN CO Mod& Mod::FactorialInverse(CRUI n){ST VE> memory ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory.push_back(memory[LE_curr - 1]* Inverse(LE_curr));LE_curr++;}RE memory[n];}TE IN Mod Mod::Combination(CRUI n,CRUI i){RE i <= n?Factorial(n)* FactorialInverse(i)* FactorialInverse(n - i):zero();}TE CE CRUI Mod::RP()CO NE{RE m_n;}TE CE Mod Mod::DeRP(uint n)NE{Mod n_copy{};n_copy.m_n = MO(n);RE n_copy;}TE IN CO Mod& Mod::zero()NE{ST CE CO Mod z{};RE z;}TE IN CO Mod& Mod::one()NE{ST CE CO Mod o{1};RE o;}TE IN Mod Inverse(CO Mod& n){RE MO(Mod(n).Invert());}TE CE Mod PW(Mod n,INT EX){RE MO(n.PW(MO(EX)));}TE CE VO swap(Mod& n0,Mod& n1)NE{n0.swap(n1);}TE IN string to_string(CO Mod& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE IN IS& OP>>(IS& is,Mod& n){ll m;is >> m;n = m;RE is;}TE IN OS& OP<<(OS& os,CO Mod& n){RE os << n.RP();} #define DF_OF_HASH_FOR_MOD(MOD)IN size_t hash::OP()(CO MOD& n)CO{ST CO hash h;RE h(n.RP());} TE DC_OF_HASH(Mod); TE DF_OF_HASH_FOR_MOD(Mod); /* Loop (1KB)*/ TE bool NextLoop(CRI SZ,CO VE& lower_bound,CO VE& upper_limit,VE& index){int depth = 0;WH(depth < SZ){if(++index[depth]< upper_limit[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE bool NextLoop(CO VE& lower_bound,CO VE& upper_limit,VE& index){RE NextLoop(index.SZ(),lower_bound,upper_limit,index);}TE bool NextLoopEq(CRI SZ,CO VE& lower_bound,CO VE& upper_bound,VE& index){int depth = 0;WH(depth < SZ){if(++index[depth]<= upper_bound[depth]){break;}index[depth]= lower_bound[depth];depth++;}RE depth < SZ;}TE bool NextLoopEq(CO VE& lower_bound,CO VE& upper_bound,VE& index){RE NextLoopEq(index.SZ(),lower_bound,upper_bound,index);} /* string (1KB)*/ TE IN char IntToChar(CO INT& i,CO char& c = 'a'){RE c + i;}TE IN INT CharToInt(CO char& i){RE i -(i < 'a'?'A':'a');}TE string ArrayToString(CO VE& A,CO char& c = 'a'){CO int N = A.SZ();string S(N,c);for(int i = 0;i < N;i++){S[i]= IntToChar(A[i],c);}RE S;}TE VE StringToArray(CO string& S){CO int N = S.SZ();VE A(N);for(int i = 0;i < N;i++){A[i]= CharToInt(S[i]);}RE A;} #endif /* AAA 常設ライブラリは以上に挿入する。*/ #define INCLUDE_LIBRARY #include __FILE__ #endif /* INCLUDE_LIBRARY */ #endif /* INCLUDE_SUB */ #endif /* INCLUDE_MAIN */