#include <cassert>
#include <vector>

// Shortest path of Monge-weighted graph
// Variant of LARSCH Algorithm: https://noshi91.hatenablog.com/entry/2023/02/18/005856
// Complexity: O(n log n)
//
// Given a directed graph with n vertices and weighted edges
// (w(i, j) = cost_callback(i, j) (i < j)),
// this class calculates the shortest path from vertex 0 to all other vertices.
template <class Cost> struct monge_shortest_path {
    std::vector<Cost> dist; // dist[i] = shortest distance from 0 to i
    std::vector<int> amin;  // amin[i] = previous vertex of i in the shortest path

    template <class F> void _check(int i, int k, F cost_callback) {
        if (i <= k) return;
        if (Cost c = dist[k] + cost_callback(k, i); c < dist[i]) dist[i] = c, amin[i] = k;
    }

    template <class F> void _rec_solve(int l, int r, F cost_callback) {
        if (r - l == 1) return;

        const int m = (l + r) / 2;
        for (int k = amin[l]; k <= amin[r]; ++k) _check(m, k, cost_callback);

        _rec_solve(l, m, cost_callback);
        for (int k = l + 1; k <= m; ++k) _check(r, k, cost_callback);
        _rec_solve(m, r, cost_callback);
    }

    template <class F> Cost solve(int n, F cost_callback) {
        assert(n > 0);
        dist.resize(n);
        amin.assign(n, 0);

        dist[0] = Cost();
        for (int i = 1; i < n; ++i) dist[i] = cost_callback(0, i);

        _rec_solve(0, n - 1, cost_callback);

        return dist.back();
    }

    template <class F> int num_edges() const {
        int ret = 0;
        for (int c = (int)amin.size() - 1; c >= 0; c = amin[c]) ++ret;
        return ret;
    }
};

#include <iostream>
using namespace std;

int main() {
    cin.tie(nullptr), ios::sync_with_stdio(false);

    int N;
    cin >> N;
    vector<int> A(N), X(N), Y(N);
    for (auto &a : A) cin >> a;
    for (auto &x : X) cin >> x;
    for (auto &y : Y) cin >> y;

    auto weight = [&](int j, int i) {
        assert(j < i);
        --i;
        const long long dx = abs(A.at(i) - X.at(j)), dy = Y.at(j);
        return dx * dx * dx + dy * dy * dy;
    };

    monge_shortest_path<long long> msp;
    cout << msp.solve(N + 1, weight) << '\n';
}