#include using namespace std; using ll = long long; //#include //using namespace atcoder; //using mint = modint998244353; # define M_PI 3.14159265358979323846 /* pi */ #define watch(x) cout << (#x) << " is " << (x) << endl //#pragma GCC target ("avx2") #pragma GCC optimization ("Ofast") #if 0 #include #include using namespace __gnu_pbds; template using ordered_set = tree, rb_tree_tag, tree_order_statistics_node_update>; template using ordered_map = tree, rb_tree_tag, tree_order_statistics_node_update>; #endif const int MOD = (1e9+7); template < typename T = int > ostream& operator << (ostream &out, const vector < T > &v){ for (const T &x: v) out << x << ' '; return out; } template void printmat(const vector>& mat) { for (auto row : mat) { for (auto elem : row) cout << elem << " "; cout << "\n"; } } void printdq(const deque& v) { for (auto elem : v) cout << elem << " "; cout << endl; } template void printv(const vector& v) { for (auto elem : v) cout << elem << " "; cout << "\n"; } template void printdq(const deque& v) { for (auto elem : v) cout << elem << " "; cout << endl; } template void printvp(const vector>& vp) { for (auto pr : vp) { cout << pr.first << " " << pr.second; cout << "\n"; } } void printvs(const vector>& vs) { for (auto row : vs) { for (auto elem : row) cout << elem << ", "; cout << endl; } } template void printht(const unordered_map& ht) { for (auto elem : ht) cout << elem.first << " : " << elem.second << endl; } template void printmp(const map& ht) { for (auto elem : ht) cout << elem.first << " : " << elem.second << endl; } template void printst(const set& st) { for (auto elem : st) cout << elem << " "; cout << endl; } template void printms(const multiset& st) { for (auto elem : st) cout << elem << " "; cout << endl; } bool isPrime(long long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } map primeFactors(long long n) { map ans; while (n % 2 == 0) { ans[2]++; n = n/2; } for (long long i = 3; i*i <= (n); i = i + 2) { while (n % i == 0) { ans[i]++; n = n/i; } } if (n > 2) ans[n]++; return ans; } /* vector uf(n), sz(n,1); for (int i=0; i& uf, int i) { while (uf[i]!=i) i = uf[i]; return i; } bool union_f(vector& uf, vector& sz, int a, int b) { a = find_f(uf, a); b = find_f(uf, b); //cout << "a, b = " << a << ", " << b << endl; if (a==b) return false; if (sz[a] < sz[b]) { //cout << "sz[a], sz[b] = " << sz[a] << ", " << sz[b] << endl; //cout << "a, b = " << a << ", " << b << endl; swap(a,b); //cout << "a, b = " << a << ", " << b << endl; } sz[a] += sz[b]; uf[b] = a; return true; } long long modexp(long long b, long long e, long long M) { if (!e) return 1; b %= M; long long x = modexp(b * b % M, e / 2, M); if (e % 2) { return b * x % M; } else { return x; } } ll gcdExtended(ll a, ll b, ll* x, ll* y) { if (a == 0) { *x = 0, *y = 1; return b; } ll x1, y1; ll gcd = gcdExtended(b % a, a, &x1, &y1); *x = y1 - (b / a) * x1; *y = x1; return gcd; } ll modInverse(ll a, ll m) { ll x, y, res=-1; ll g = gcdExtended(a, m, &x, &y); if (g != 1) { //cout << "Inverse doesn't exist"; res = -1; } else { // m is added to handle negative x res = (x % m + m) % m; } return res; } int lenOfLIS(vector& v) { int n = v.size(), len = 0; vector dp(n,0); for (int num : v) { int i = lower_bound(dp.begin(), dp.begin()+len, num) - dp.begin(); dp[i] = num; if (i == len) { len++; } } return len; } #if 0 const int N = 1e6+4; // limit for array size int n; // array size int t[2 * N]; void build() { // build the tree for (int i = n - 1; i > 0; --i) t[i] = max(t[i<<1], t[i<<1|1]); } void modify(int p, int value) { // set value at position p for (t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; } int query(int l, int r) { // max on interval [l, r) int res = 0; for (l += n, r += n; l < r; l >>= 1, r >>= 1) { if (l&1) res = max(res, t[l++]); if (r&1) res = max(res, t[--r]); } return res; } #endif set SieveOfEratosthenes(int n) { bool prime[n+1]; memset(prime, true, sizeof(prime)); for (int p=2; p*p<=n; p++) { if (prime[p]) { for (int i=p*p; i<=n; i+=p) prime[i] = false; } } set v; for (int p=2; p<=n; p++) if (prime[p]) v.insert(p); return v; } vector> merge(vector>& intervals) { vector> ans; sort(intervals.begin(), intervals.end()); vector curr = intervals[0]; for (int i=1; i>& vp, ll w) { ll n = vp.size(); vector> dp(n+1, vector(w+1, -1)); dp[0][0] = 0; //printvp(vp); for (int i=1; i<=n; i++) { dp[i][0] = dp[i-1][0]; for (int j=1; j<=w; j++) { dp[i][j] = max(dp[i-1][j], dp[i][j-1]); if (j-vp[i-1].first>=0 && dp[i-1][j-vp[i-1].first]!=-1) dp[i][j] = max(dp[i][j], dp[i-1][j-vp[i-1].first]+vp[i-1].second); } } //printmat(dp); ll ans = dp[n][w]; return ans; } int get(vector *tree,int i){ int sum = 0; while(i>0){ sum +=tree->at(i); i-=i&-i; } return sum; } void add(vector *tree, int idx ,int val){ while (idx < tree->size()){ tree->at(idx) += val; idx += (idx & -idx); } } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int T=1, caseIdx=0; //cin >> T; while (T--) { //caseIdx++; //const int M = 998244353; ll n, Q, level=0; cin >> n >> Q; vector v(n), w(n+1); for (int i=0; i> v[i]; } for (int i=0; i> a >> b; a--; b--; w[a]++; w[b+1]--; } for (int i=0; i