# evalが悪いだけ説ある # そもそも線形計画でmin, maxが使えないよという話(ぐぬぬ) # from pulp import LpProblem, LpVariable, LpInteger, LpMinimize, value, PULP_CBC_CMD # _,y=map(int,input().split()) # s=list(input().split()) # prob=LpProblem(sense=LpMinimize) # x=LpVariable('x',lowBound=0,cat=LpInteger) # sk=[] # op = {'+': lambda x,y: x+y, # 'max': lambda x,y: max(x,y), # 'min': lambda x,y: min(x,y)} # for t in s: # if t in op: # b,a=sk.pop(),sk.pop() # sk.append(op[t](a,b)) # else: sk.append(x if t=="X" else int(t)) # prob+=sk[0]==y # prob.solve(PULP_CBC_CMD(msg=False)) # print(int(value(x)) if prob.status==1 else -1) # 非線形計画だと厳密な整数解は出しにくいよという話(ぐぬぬ) # ワンチャンいけるかも from scipy.optimize import minimize _,y=map(int,input().split()) s=list(input().split()) def f(x): sk=[] op = {'+': lambda x,y: x+y, 'max': lambda x,y: max(x,y), 'min': lambda x,y: min(x,y)} for t in s: if t in op: b,a=sk.pop(),sk.pop() sk.append(op[t](a,b)) else: sk.append(x if t=="X" else int(t)) return sk[0] def g(x): return abs(f(x[0])-y) ret=minimize(g,x0=[0],method='Nelder-Mead') apx=int(ret.x[0]) if f(apx)==y: print(apx) else: print(-1) # ニア、僕の勝ちだ # _,y=map(int,input().split()) # s=list(input().split()) # def f(x): # sk=[] # op={'+': lambda x,y: x+y, # 'max': lambda x,y: max(x,y), # 'min': lambda x,y: min(x,y)} # for t in s: # if t in op: # b,a=sk.pop(),sk.pop() # sk.append(op[t](a,b)) # else: sk.append(x if t=="X" else int(t)) # return sk[0] # ok,ng=(1<<61)-1,-1 # while abs(ok-ng)>1: # x=(ok+ng)//2 # # print(x, f(x)) # if f(x)>=y: ok=x # else: ng=x # print(ok if f(ok)==y else -1)