#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vvvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vvvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) int DY[4] = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x))) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x))) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順) #define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template inline T getb(T set, int i) { return (set >> i) & T(1); } template inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod // 演算子オーバーロード template inline istream& operator>>(istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline istream& operator>>(istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include() #include using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif using mint = modint998244353; //using mint = static_modint<1000000009>; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector; using vvm = vector; using vvvm = vector; using vvvvm = vector; using pim = pair; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define dump(...) #define dumpel(...) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す #endif //【拡張ユークリッドの互除法】O(log max(|a|, |b|)) /* * g = GCD(a, b) ≧ 0 を返しつつ,a x + b y = g の解 (x, y) を求める. * |x| + |y| は最小になるよう選ばれる. */ template T extended_gcd(T a, T b, T& x, T& y) { // 参考 : https://ashiato45.hatenablog.jp/entry/2018/11/04/172848 // verify : https://atcoder.jp/contests/abc340/tasks/abc340_f //【方法】 // 行列を用いた非再帰の解法を採用する. // // はじめは // [1 0] [a] [a] // [0 1].[b] = [b] // で初期化する.第 i ステップを終えて // [x_i y_i ] [a] [a_i] // [x_(i+1) y_(i+1)].[b] = [b_i] // が成り立っているとする.このとき // a_i = q b_i + r // なる q, r をとると, // [0 1] [a_i] = [b_i] // [1 -q].[b_i] = [ r ] // より // [0 1] [x_i y_i ] [a] [b_i] // [1 -q].[x_(i+1) y_(i+1)].[b] = [ r ] // が成り立つので左辺の行列積をまとめる.この更新を続けていくと,いずれ // [x y] [a] [±1] // [* *].[b] = [ 0] // の形になるので,1 行目から所望の等式が得られる. if (a == 0 && b == 0) { x = y = 0; return 0; } x = 1, y = 0; T nx = 0, ny = 1; while (b != 0) { T q = a / b; T r = a % b; x -= q * nx; y -= q * ny; swap(nx, x); swap(ny, y); a = b; b = r; } if (a < 0) { x = -x; y = -y; a = -a; } return a; } //【二元一次不定方程式】O(log max(|a|, |b|)) /* * a x + b y = c の解 (x, y) のうち,x を非負最小にするものを格納する(無理なら負も許す) * 解があれば GCD(a, b) ≧ 0,なければ -1 を返す. * * 利用:【拡張ユークリッドの互除法】 */ template T bezout(T a, T b, T c, T& x, T& y) { // verify : https://atcoder.jp/contests/abc340/tasks/abc340_f if (b == 0) { if (a == 0) { if (c == 0) { x = y = 0; return 0; } else { return -1; } } if (c % a == 0) { x = c / a; y = 0; return abs(a); } else { return -1; } } if (b < 0) { a *= -1; b *= -1; c *= -1; } // a x + b y = g = gcd(a, b) T g = extended_gcd(a, b, x, y); if (c % g != 0) return -1; a /= g; b /= g; c /= g; x *= c % b; // c が大きくてもオーバーフローしないようにする x %= b; if (x < 0) x += b; y = (c - a * x) / b; return g; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; string s, t; cin >> n >> s >> t; int ls = sz(s), lt = sz(t); vi a(n); cin >> a; rep(i, n) { int x, y; auto g = bezout(lt, ls, a[i], x, y); rep(hoge, y) { if (hoge != 0) cout << " "; cout << s; } rep(hoge, x) { cout << " " << t; } cout << "\n"; } }