// -*- coding:utf-8-unix -*- // #![feature(map_first_last)] #![allow(dead_code)] #![allow(unused_imports)] #![allow(unused_macros)] // use core::num; use std::cmp::*; use std::fmt::*; use std::hash::*; use std::io::BufRead; use std::iter::FromIterator; use std::*; use std::{cmp, collections, fmt, io, iter, ops, str}; const INF: i64 = 1223372036854775807; const UINF: usize = INF as usize; const LINF: i64 = 2147483647; const INF128: i128 = 1223372036854775807000000000000; const MOD1: i64 = 1000000007; const MOD9: i64 = 998244353; const MOD: i64 = MOD9; // const MOD: i64 = MOD2; const UMOD: usize = MOD as usize; const M_PI: f64 = 3.14159265358979323846; // use proconio::input; // const MOD: i64 = INF; use cmp::Ordering::*; use std::collections::*; use std::io::stdin; use std::io::stdout; use std::io::Write; macro_rules! p { ($x:expr) => { //if expr println!("{}", $x); }; } macro_rules! vp { // vector print separate with space ($x:expr) => { println!( "{}", $x.iter() .map(|x| x.to_string()) .collect::>() .join(" ") ); }; } macro_rules! d { ($x:expr) => { eprintln!("{:?}", $x); }; } macro_rules! yn { ($val:expr) => { if $val { println!("Yes"); } else { println!("No"); } }; } macro_rules! map{ // declear btreemap ($($key:expr => $val:expr),*) => { { let mut map = ::std::collections::BTreeMap::new(); $( map.insert($key, $val); )* map } }; } macro_rules! set{ // declear btreemap ($($key:expr),*) => { { let mut set = ::std::collections::BTreeSet::new(); $( set.insert($key); )* set } }; } //input output #[allow(dead_code)] fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } #[allow(dead_code)] fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } #[allow(dead_code)] fn read_mat(n: u32) -> Vec> { (0..n).map(|_| read_vec()).collect() } #[allow(dead_code)] fn readii() -> (i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readiii() -> (i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readuu() -> (usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } #[allow(dead_code)] fn readff() -> (f64, f64) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readcc() -> (char, char) { let mut vec: Vec = read_vec(); (vec[0], vec[1]) } fn readuuu() -> (usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } #[allow(dead_code)] fn readiiii() -> (i64, i64, i64, i64) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } #[allow(dead_code)] fn readuuuu() -> (usize, usize, usize, usize) { let mut vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } pub struct Dsu { n: usize, // root node: -1 * component size // otherwise: parent parent_or_size: Vec, } impl Dsu { // 0 <= size <= 10^8 is constrained. pub fn new(size: usize) -> Self { Self { n: size, parent_or_size: vec![-1; size], } } pub fn merge(&mut self, a: usize, b: usize) -> usize { assert!(a < self.n); assert!(b < self.n); let (mut x, mut y) = (self.leader(a), self.leader(b)); if x == y { return x; } if -self.parent_or_size[x] < -self.parent_or_size[y] { std::mem::swap(&mut x, &mut y); } self.parent_or_size[x] += self.parent_or_size[y]; self.parent_or_size[y] = x as i32; x } pub fn same(&mut self, a: usize, b: usize) -> bool { assert!(a < self.n); assert!(b < self.n); self.leader(a) == self.leader(b) } pub fn leader(&mut self, a: usize) -> usize { assert!(a < self.n); if self.parent_or_size[a] < 0 { return a; } self.parent_or_size[a] = self.leader(self.parent_or_size[a] as usize) as i32; self.parent_or_size[a] as usize } pub fn size(&mut self, a: usize) -> usize { assert!(a < self.n); let x = self.leader(a); -self.parent_or_size[x] as usize } pub fn groups(&mut self) -> Vec> { let mut leader_buf = vec![0; self.n]; let mut group_size = vec![0; self.n]; for i in 0..self.n { leader_buf[i] = self.leader(i); group_size[leader_buf[i]] += 1; } let mut result = vec![Vec::new(); self.n]; for i in 0..self.n { result[i].reserve(group_size[i]); } for i in 0..self.n { result[leader_buf[i]].push(i); } result .into_iter() .filter(|x| !x.is_empty()) .collect::>>() } } fn extended_gcd(a: isize, b: isize) -> (isize, isize, isize) { if b == 0 { (a.abs(), a.signum(), 0) } else { let (gcd, x1, y1) = extended_gcd(b, a % b); (gcd, y1, x1 - (a / b) * y1) } } fn find_max_x(a: usize, b: usize, v: usize) -> Option<(usize, usize)> { use std::convert::TryFrom; // Convert usize to isize for calculations with negative numbers let (a, b, v) = ( isize::try_from(a).ok()?, isize::try_from(b).ok()?, isize::try_from(v).ok()?, ); // Compute gcd and initial x0, y0 using extended Euclidean algorithm let (d, mut x0, mut y0) = extended_gcd(a, b); // Check if v is divisible by gcd(a, b) if v % d != 0 { return None; // No solution exists } // Scale the solution to match v = a * x + b * y let k = v / d; x0 *= k; y0 *= k; // Compute the steps to adjust x and y let a_div_d = a / d; let b_div_d = b / d; // Find the range of t where x and y are non-negative // x = x0 + (b / d) * t >= 0 // y = y0 - (a / d) * t >= 0 // Compute t_min and t_max let t_min = (-x0 + b_div_d - 1) / b_div_d; let t_max = y0 / a_div_d; if t_min > t_max { return None; // No t satisfies both conditions } // To maximize x, we take t = t_max let t = t_max; // Compute the final x and y let x = x0 + b_div_d * t; let y = y0 - a_div_d * t; // Ensure x and y are non-negative if x >= 0 && y >= 0 { Some((x as usize, y as usize)) } else { None } } fn main() { let n: usize = read(); let mut vec: Vec = read_vec(); let mut a: Vec = read_vec(); for i in 0..n { let mut x = a[i]; let mut n1 = vec[0].len(); let mut n2 = vec[1].len(); let val = find_max_x(n1, n2, x); let v1 = val.unwrap().0; let v2 = val.unwrap().1; for j in 0..v1 { if j != 0 { print!(" "); } print!("{}", vec[0]); } for j in 0..v2 { if !(n1 == 0 && j == 0) { print!(" "); } print!("{}", vec[1]); } println!(); } return; }