#include using namespace std; using ll = long long; #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 2; template struct edge{ int from; int to; T cost; int id; edge(){} edge(int to, T cost=1) : from(-1), to(to), cost(cost){} edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){} void reverse(){swap(from, to);} }; template struct edges : std::vector>{ void sort(){ std::sort( (*this).begin(), (*this).end(), [](const edge& a, const edge& b){ return a.cost < b.cost; } ); } }; template struct graph : std::vector>{ private: int n = 0; int m = 0; edges es; bool dir; public: graph(int n, bool dir) : n(n), dir(dir){ (*this).resize(n); } void add_edge(int from, int to, T cost=1){ if(dir){ es.push_back(edge(from, to, cost, m)); (*this)[from].push_back(edge(from, to, cost, m++)); }else{ if(from > to) swap(from, to); es.push_back(edge(from, to, cost, m)); (*this)[from].push_back(edge(from, to, cost, m)); (*this)[to].push_back(edge(to, from, cost, m++)); } } int get_vnum(){ return n; } int get_enum(){ return m; } bool get_dir(){ return dir; } edge get_edge(int i){ return es[i]; } edges get_edge_set(){ return es; } }; template struct redge{ int from, to; T cap, cost; int rev; redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){} redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){} }; template using Edges = vector>; template using weighted_graph = vector>; template using tree = vector>; using unweighted_graph = vector>; template using residual_graph = vector>>; struct union_find{ vector par; vector siz; union_find(int n) : par(n), siz(n, 1){ for(int i=0; i> n >> m >> k; vector x(k); for(int i=0; i> x[i]; x[i]--; } graph G(n, false); union_find uf(n); for(int i=0; i> u >> v; G.add_edge(u-1, v-1); uf.unite(u-1, v-1); } // there does not exist all people in same connected component for(int i=1; i c(n, -1); function dfs = [&](int v){ for(auto e : G[v]){ if(c[e.to] == -1){ c[e.to] = 1 - c[v]; dfs(e.to); }else{ if(c[e.to] == c[v]){ cout << "Yes\n"; exit(0); } } } }; c[uf.root(x[0])] = 0; dfs(uf.root(x[0])); for(int i=1; i> T; while(T--) solve(); }