#include using namespace std; using ll = long long; #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 2; template struct edge{ int from; int to; T cost; int id; edge(){} edge(int to, T cost=1) : from(-1), to(to), cost(cost){} edge(int to, T cost, int id) : from(-1), to(to), cost(cost), id(id){} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){} void reverse(){swap(from, to);} }; template struct edges : std::vector>{ void sort(){ std::sort( (*this).begin(), (*this).end(), [](const edge& a, const edge& b){ return a.cost < b.cost; } ); } }; template struct graph : std::vector>{ private: int n = 0; int m = 0; edges es; bool dir; public: graph(int n, bool dir) : n(n), dir(dir){ (*this).resize(n); } void add_edge(int from, int to, T cost=1){ if(dir){ es.push_back(edge(from, to, cost, m)); (*this)[from].push_back(edge(from, to, cost, m++)); }else{ if(from > to) swap(from, to); es.push_back(edge(from, to, cost, m)); (*this)[from].push_back(edge(from, to, cost, m)); (*this)[to].push_back(edge(to, from, cost, m++)); } } int get_vnum(){ return n; } int get_enum(){ return m; } bool get_dir(){ return dir; } edge get_edge(int i){ return es[i]; } edges get_edge_set(){ return es; } }; template struct redge{ int from, to; T cap, cost; int rev; redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){} redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){} }; template using Edges = vector>; template using weighted_graph = vector>; template using tree = vector>; using unweighted_graph = vector>; template using residual_graph = vector>>; template class modint{ long long x; public: modint(long long x=0) : x((x%mod+mod)%mod) {} modint operator-() const { return modint(-x); } bool operator==(const modint& a){ if(x == a) return true; else return false; } bool operator==(long long a){ if(x == a) return true; else return false; } bool operator!=(const modint& a){ if(x != a) return true; else return false; } bool operator!=(long long a){ if(x != a) return true; else return false; } modint& operator+=(const modint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& a) { (x *= a.x) %= mod; return *this; } modint operator+(const modint& a) const { modint res(*this); return res+=a; } modint operator-(const modint& a) const { modint res(*this); return res-=a; } modint operator*(const modint& a) const { modint res(*this); return res*=a; } modint pow(long long t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2); } modint& operator/=(const modint& a) { return (*this) *= a.inv(); } modint operator/(const modint& a) const { modint res(*this); return res/=a; } friend std::istream& operator>>(std::istream& is, modint& m) noexcept { is >> m.x; m.x %= mod; if (m.x < 0) m.x += mod; return is; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } }; using mint = modint; void solve(){ int n; cin >> n; vector a(n); for(int i=0; i> a[i]; graph T(n, false); for(int i=0; i> u >> v; T.add_edge(u-1, v-1); } vector dp(n, 1); mint ans = 0; function dfs = [&](int v, int p){ mint sum = 0, sum2 = 0; for(auto e : T[v]) if(e.to != p){ dfs(e.to, v); sum += dp[e.to]; sum2 += dp[e.to]*dp[e.to]; ans += mint(a[v])*dp[e.to]; } dp[v] = (sum + mint(1))*mint(a[v]); sum = sum*sum - sum2; ans += sum*mint(a[v])/mint(2); }; dfs(0, -1); cout << ans << '\n'; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int T=1; //cin >> T; while(T--) solve(); }