// -*- coding:utf-8-unix -*- #![allow(dead_code, unused_imports, unused_macros)] fn main() { input! { n: usize, m: usize, k: usize, x: [usize1; k], edge: [(usize1, usize1); m], } let mut edges = vec![vec![]; n]; for (u, v) in edge { edges[u].push(v); edges[v].push(u); } let mut b = 0; for xi in x { b |= 1 << xi; } let mut memo: HashMap = HashMap::new(); for i in 0..n { memo.insert(1 << i, true); } fn dp(b: usize, edges: &Vec>, memo: &mut HashMap) -> bool { if let Some(&res) = memo.get(&b) { return res; } let mut q = HashSet::from([0]); for i in 0..edges.len() { if (b >> i) & 1 == 1 { let mut nq = HashSet::new(); for &j in &edges[i] { for &bi in &q { nq.insert(bi | (1 << j)); } } q = nq; } } memo.insert(b, false); for i in q { if i != b && dp(i, edges, memo) { memo.insert(b, true); return true; } } false } yesno!(dp(b, &edges, &mut memo)); } // use ::num; // use itertools::Itertools; // use ac_library::*; // use proconio::input; use cmp::Ordering::*; // use itertools::Itertools; // use itertools_num::ItertoolsNum; // use maplit; // use ordered_float::OrderedFloat; use std::cmp::*; use std::collections::*; use std::fmt::*; use std::hash::*; use std::io::{stdin, stdout, Write}; use std::iter::FromIterator; use std::str::FromStr; use std::*; // use superslice::*; // use rand::Rng; // use rand::rngs::SmallRng; // use rand::seq::SliceRandom; const MOD1000000007: i64 = 1000000007; const MOD998244353: i64 = 998244353; const MOD: i64 = 998244353; const UMOD: usize = MOD as usize; const PI: f64 = f64::consts::PI; const DIRS: [char; 4] = ['U', 'D', 'L', 'R']; const DIJ: [(usize, usize); 4] = [(!0, 0), (1, 0), (0, !0), (0, 1)]; #[macro_export] macro_rules! p { ($($arg:expr),*) => { { print!("{}\n", vec![$(format!("{}", $arg)),*].join(" ")); } }; } #[macro_export] macro_rules! vp { ($x:expr) => { print!( "{}\n", $x.iter() .map(|x| x.to_string()) .collect::>() .join(" ") ); }; } #[macro_export] macro_rules! dprint { ($($arg:expr),*) => { #[allow(unused_assignments)] { let mut first = true; $( if !first { eprint!(" "); } eprint!("{:?}", $arg); first = false; )* eprint!("\n"); } }; } #[macro_export] macro_rules! yesno { ($val:expr) => { if $val { print!("Yes\n"); } else { print!("No\n"); } }; } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } fn read_mat(n: usize) -> Vec> { (0..n).map(|_| read_vec()).collect() } fn readii() -> (i64, i64) { let vec: Vec = read_vec(); (vec[0], vec[1]) } fn readiii() -> (i64, i64, i64) { let vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } fn readuu() -> (usize, usize) { let vec: Vec = read_vec(); (vec[0], vec[1]) } fn readff() -> (f64, f64) { let vec: Vec = read_vec(); (vec[0], vec[1]) } fn readcc() -> (char, char) { let vec: Vec = read_vec(); (vec[0], vec[1]) } fn readuuu() -> (usize, usize, usize) { let vec: Vec = read_vec(); (vec[0], vec[1], vec[2]) } fn readiiii() -> (i64, i64, i64, i64) { let vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } fn readuuuu() -> (usize, usize, usize, usize) { let vec: Vec = read_vec(); (vec[0], vec[1], vec[2], vec[3]) } #[macro_export] macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); let mut next = || { iter.next().unwrap() }; input_inner!{next, $($r)*} }; ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } #[macro_export] macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, mut $var:ident : $t:tt $($r:tt)*) => { let mut $var = read_value!($next, $t); input_inner!{$next $($r)*} }; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } #[macro_export] macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } pub trait BinarySearch { fn bisect_left(&self, key: T) -> usize; fn bisect_right(&self, key: T) -> usize; } impl BinarySearch for [T] where T: Ord, { fn bisect_left(&self, key: T) -> usize { let mut ng = -1 as isize; let mut ok = self.len() as isize; while ok - ng > 1 { let mid = (ok + ng) / 2; if key <= self[mid as usize] { ok = mid; } else { ng = mid; } } ok as usize } fn bisect_right(&self, key: T) -> usize { let mut ng = -1 as isize; let mut ok = self.len() as isize; while ok - ng > 1 { let mid = (ok + ng) / 2; if key < self[mid as usize] { ok = mid; } else { ng = mid; } } ok as usize } } pub fn next_permutation(a: &mut [T]) -> bool { let Some(i) = a.windows(2).rposition(|w| w[0] < w[1]) else { return false; }; let j = a.iter().rposition(|x| x > &a[i]).unwrap(); a.swap(i, j); a[i + 1..].reverse(); true } fn mod_pow(x: T, a: T, md: T) -> T where T: Copy + From + std::ops::Mul + std::ops::Rem + std::ops::Shr + std::ops::Add + std::ops::BitAnd + PartialOrd + Default + std::ops::ShrAssign, { let mut res = T::from(1); let mut base = x; let mut ai = a; while ai > T::from(0) { if ai & T::from(1) == T::from(1) { res = res * base % md; } ai >>= 1; base = (base * base) % md; } res }