#ifdef NACHIA #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include #include #include #include using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(int i=0; i void chmin(A& l, const A& r){ if(r < l) l = r; } template void chmax(A& l, const A& r){ if(l < r) l = r; } #include using Modint = atcoder::static_modint<998244353>; using namespace std; #include namespace nachia{ template struct PrimitiveRoot{ using u64 = unsigned long long; static constexpr u64 powm(u64 a, u64 i) { u64 res = 1, aa = a; for( ; i; i /= 2){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; } return res; } static constexpr bool ExamineVal(unsigned int g){ u64 t = MOD - 1; for(u64 d=2; d*d<=t; d+=1+(d&1)) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(u64 x=2; x class Comb{ private: std::vector F; std::vector iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else using u64 = unsigned long long; int q = (x >> 32) ? 32 : 0; auto m = x >> q; constexpr u64 hi = 0x8888'8888; constexpr u64 mi = 0x1111'1111; m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35; m = (((m | ~(hi - (x & ~hi))) & hi) * mi) >> 31; q += (m & 0xf) << 2; q += 0x3333'3333'2222'1100 >> (((x >> q) & 0xf) << 2) & 0xf; return q; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return MsbIndex(x & -x); #endif } } namespace nachia { template struct NttInterface{ template void Butterfly(Iter, int) const {} template void IButterfly(Iter, int) const {} template void BitReversal(Iter a, int N) const { for(int i=0, j=0; j>1; k > (i^=k); k>>=1); } } }; } // namespace nachia #include #include namespace nachia{ template struct Ntt : NttInterface { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } static constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); using RootTable = std::array; RootTable root, iroot, rate3, irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template void ButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const { static const fft_info info; int h = n * stride; while(repeat--){ int len = 1; int p = h; if(ceil_pow2(n)%2 == 1){ p >>= 1; for(int i=0; i stride; ){ p >>= 2; mint rot = 1, imag = info.root[2]; u64 mod2 = u64(mint::mod()) * mint::mod(); int offset = p; for(int s=0; s void Butterfly(RandomAccessIterator a, int n) const { ButterflyLayered(a, n, 1, 1); } template void IButterflyLayered(RandomAccessIterator a, int n, int stride, int repeat) const { static const fft_info info; constexpr int MOD = mint::mod(); while(repeat--){ int len = n; int p = stride; for( ; 2 < len; ){ len >>= 2; mint irot = 1, iimag = info.iroot[2]; int offset = p; for(int s=0; s void IButterfly(RandomAccessIterator a, int n) const { IButterflyLayered(a, n, 1, 1); } }; } // namespace nachia namespace nachia { template> struct FpsNtt { public: using Fps = FpsNtt; using ElemTy = Elem; static constexpr unsigned int MOD = Elem::mod(); static constexpr int CONV_THRES = 30; static const NttInst nttInst; static const unsigned int zeta = nachia::PrimitiveRoot::GetVal(); private: using u32 = unsigned int; static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb comb; std::vector a; int RSZ(int& sz) const { return sz = (sz < 0 ? size() : sz); } public: int size() const noexcept { return a.size(); } Elem& operator[](int x) noexcept { return a[x]; } const Elem& operator[](int x) const noexcept { return a[x]; } Elem getCoeff(int x) const noexcept { return (0 <= x && x < size()) ? a[x] : ZeroElem(); } static Comb& GetComb() { return comb; } static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x*2-1); } Fps move(){ return std::move(*this); } Fps& set(int i, Elem c){ a[i] = c; return *this; } Fps& removeLeadingZeros(){ int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if((int)a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FpsNtt(){} FpsNtt(int sz) : a(sz, ZeroElem()) {} FpsNtt(int sz, Elem e) : a(sz, e) {} FpsNtt(std::vector&& src) : a(std::move(src)) {} FpsNtt(const std::vector& src) : a(src) {} Fps& ntt() { capSize(BestNttSize(size())); nttInst.Butterfly(a.begin(), size()); return *this; } Fps& intt() { nttInst.IButterfly(a.begin(), a.size()); return times(Elem::raw(size()).inv()); } Fps nttDouble(Fps vanilla) const { int n = size(); assert(n != 0 && n == (n&-n)); // n is a power of 2 Elem q = Elem::raw(zeta).pow((Elem::mod() - 1) / (n*2)); Elem qq = OneElem(); for(int i=0; i srcR = max(srcL, size()); // if resSz is unspecified -> resSz = destL + srcR - srcL Fps clip(int srcL, int srcR = -1, int destL = 0, int resSz = -1) const { srcR = RSZ(srcR); if(resSz < 0) resSz = destL + srcR - srcL; int rj = std::min(std::min(srcR, size()) - srcL, resSz - destL); Fps res(resSz); for(int j=std::max(0, -srcL); j b.size()) return convolution(b, a, sz); if(sz < 0) sz = std::max(0, a.size() + b.size() - 1); std::vector res(sz); for(int i=0; i=1; i--) a[i] = a[i-1] * comb.invOf(i); return set(0, ZeroElem()); } Fps log(int sz = -1){ RSZ(sz); assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), clip().difference(), sz-1).integral(); } Fps exp(int sz = -1){ RSZ(sz); Fps res = Fps(1).set(0, OneElem()); while(res.size() < sz){ auto z = res.size(); auto tmp = res.capSize(z*2).log().set(0, -OneElem()).move(); for(int i=0; i= (n-1) / k + 1) return Fps(n); Elem a0 = a[ctz]; return clip(ctz, ctz+n-ctz*k).times(a0.inv()).log().times(Elem(k)).exp().times(a0.pow(k)).clip(0, -1, ctz*k); } auto begin(){ return a.begin(); } auto end(){ return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const { std::string res = beg; bool f = false; for(auto x : a){ if(f){ res += delim; } f = true; res += std::to_string(x.val()); } res += en; return res; } std::vector getVectorMoved(){ return std::move(a); } Fps& operator+=(const Fps& r){ capSize(std::max(size(), r.size())); for(int i=0; i=0; i--) res = res * x + a[i]; return res; } }; template Comb FpsNtt::comb; template const NttInst FpsNtt::nttInst; } // namespace nachia using Fps = nachia::FpsNtt; namespace nachia{ template Fps PolynomialTaylorShift(Fps f, typename Fps::ElemTy c){ int n = f.size(); Fps C = Fps(n).set(0,1); for(int i=1; i Fps FpsAntiTaylorShift(Fps f, typename Fps::ElemTy c){ int n = f.size(); Fps C = Fps(n).set(0,1); for(int i=1; i Fps PolynomialSubstitute_Ax_B( Fps f, typename Fps::ElemTy a, typename Fps::ElemTy b ){ using Elem = typename Fps::ElemTy; if(f.size() == 0){ if(b.val() == 0) return Fps(0); return Fps(1).set(0,b); } f = PolynomialTaylorShift(f.move(), b); Elem q = 1; for(int i=1; i Fps PolynomialSubstitute_Ax2_Bx_C( Fps f, typename Fps::ElemTy a, typename Fps::ElemTy b, typename Fps::ElemTy c ){ int minsz = f.size()*2-1; using Elem = typename Fps::ElemTy; if(f.size() == 0) return PolynomialSubstitute_Ax_B(f.move(), b, c); if(a.val() == 0) return PolynomialSubstitute_Ax_B(f.move(), b, c).capSize(minsz).move(); auto p = b / (a+a); f = PolynomialSubstitute_Ax_B(f.move(), a, c-p*p*a); Fps res(minsz); for(int i=0; i Fps PolynomialSubstitute_Ax_div_Bx_C( Fps f, typename Fps::ElemTy a, typename Fps::ElemTy b, typename Fps::ElemTy c ){ int n = f.size(); if(n == 0) return Fps(0); auto& comb = Fps::GetComb(); comb.extend(n); auto One = comb.factorial(0); if((c-One).val() == 0){ auto ci = c.inv(); a *= ci; b *= ci; c = One; } auto p = One; for(int i=0; i Fps PolynomialSubstitute_Ax_B_div_Cx_D( Fps f, typename Fps::ElemTy a, typename Fps::ElemTy b, typename Fps::ElemTy c, typename Fps::ElemTy d ){ int n = f.size(); if(n == 0) return Fps(0); assert(d.val() != 0); // fix d = 1 auto di = d.inv(); a *= di; b *= di; c *= di; d *= di; if(c.val() == 0) return PolynomialSubstitute_Ax_B(f.move(), a, b).clip(0,n); // fix a/c != b/d if(a.val() == (c * b).val()) return Fps(n).set(0,f.eval(b)).move(); f = PolynomialSubstitute_Ax_div_Bx_C(f.move(), a-c*b, c, d); if(b.val() != 0) f = PolynomialTaylorShift(f.move(), b); return f; } } // namespace nachia void testcase(){ i64 N, M; cin >> N >> M; auto f = Fps(N+1); rep(i,N+1) f[i] = Modint(M+1-i).pow(N) * (i%2?-1:1); f = nachia::PolynomialSubstitute_Ax_B_div_Cx_D(f.move(), 1, 0, -1, 1); Modint ans = 0; for(int m=1; m<=N && m<=M+1; m++){ ans += f[m] * (m*2-1); } cout << ans.val() << '\n'; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); testcase(); return 0; }