#line 2 "/root/AtCoder/Halc-Library/Template/Template.hpp" #include using namespace std; #line 8 "/root/AtCoder/Halc-Library/Template/InOut.hpp" inline void scan() {} inline void scan(int32_t &a) { std::cin >> a; } inline void scan(uint32_t &a) { std::cin >> a; } inline void scan(int64_t &a) { std::cin >> a; } inline void scan(uint64_t &a) { std::cin >> a; } inline void scan(char &a) { std::cin >> a; } inline void scan(float &a) { std::cin >> a; } inline void scan(double &a) { std::cin >> a; } inline void scan(long double &a) { std::cin >> a; } inline void scan(std::vector &vec) { for (int32_t i = 0; i < vec.size(); i++) { int a; scan(a); vec[i] = a; } } inline void scan(std::string &a) { std::cin >> a; } template inline void scan(std::vector &vec); template inline void scan(std::array &vec); template inline void scan(std::pair &p); template inline void scan(T (&vec)[size]); template inline void scan(std::vector &vec) { for (auto &i : vec) scan(i); } template inline void scan(std::deque &vec) { for (auto &i : vec) scan(i); } template inline void scan(std::array &vec) { for (auto &i : vec) scan(i); } template inline void scan(std::pair &p) { scan(p.first); scan(p.second); } template inline void scan(T (&vec)[size]) { for (auto &i : vec) scan(i); } template inline void scan(T &a) { std::cin >> a; } inline void in() {} template inline void in(Head &head, Tail &...tail) { scan(head); in(tail...); } inline void print() { std::cout << ' '; } inline void print(const bool &a) { std::cout << a; } inline void print(const int32_t &a) { std::cout << a; } inline void print(const uint32_t &a) { std::cout << a; } inline void print(const int64_t &a) { std::cout << a; } inline void print(const uint64_t &a) { std::cout << a; } inline void print(const char &a) { std::cout << a; } inline void print(const char a[]) { std::cout << a; } inline void print(const float &a) { std::cout << a; } inline void print(const double &a) { std::cout << a; } inline void print(const long double &a) { std::cout << a; } inline void print(const std::string &a) { for (auto &&i : a) print(i); } template inline void print(const std::vector &vec); template inline void print(const std::array &vec); template inline void print(const std::pair &p); template inline void print(const T (&vec)[size]); template inline void print(const std::vector &vec) { if (vec.empty()) return; print(vec[0]); for (auto i = vec.begin(); ++i != vec.end();) { std::cout << ' '; print(*i); } } template inline void print(const std::deque &vec) { if (vec.empty()) return; print(vec[0]); for (auto i = vec.begin(); ++i != vec.end();) { std::cout << ' '; print(*i); } } template inline void print(const std::array &vec) { print(vec[0]); for (auto i = vec.begin(); ++i != vec.end();) { std::cout << ' '; print(*i); } } template inline void print(const std::pair &p) { print(p.first); std::cout << ' '; print(p.second); } template inline void print(const T (&vec)[size]) { print(vec[0]); for (auto i = vec; ++i != end(vec);) { std::cout << ' '; print(*i); } } template inline void print(const T &a) { std::cout << a; } inline void out() { std::cout << '\n'; } template inline void out(const T &t) { print(t); std::cout << '\n'; } template inline void out(const Head &head, const Tail &...tail) { print(head); std::cout << ' '; out(tail...); } inline void Yes(bool i = true) { out(i ? "Yes" : "No"); } inline void No(bool i = true) { out(i ? "No" : "Yes"); } inline void Takahashi(bool i = true) { out(i ? "Takahashi" : "Aoki"); } inline void Aoki(bool i = true) { out(i ? "Aoki" : "Takahashi"); } inline void Alice(bool i = true) { out(i ? "Alice" : "Bob"); } inline void Bob(bool i = true) { out(i ? "Bob" : "Alice"); } inline void First(bool i = true) { out(i ? "First" : "Second"); } inline void Second(bool i = true) { out(i ? "Second" : "First"); } inline void Possible(bool i = true) { out(i ? "Possible" : "Impossible"); } inline void Impossible(bool i = true) { out(i ? "Impossible" : "Possible"); } inline void fls() { std::flush(std::cout); } struct IOsetup { IOsetup() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(16); } } iosetup; #line 9 "/root/AtCoder/Halc-Library/Template/Util.hpp" using ll = int64_t; using ld = long double; using ull = uint64_t; using uint = uint32_t; using pll = std::pair; using pii = std::pair; using vl = std::vector; using vvl = std::vector>; using pdd = std::pair; using tuplis = std::array; template using pq = std::priority_queue, std::greater>; constexpr ll LINF = (1LL << 62) - (1LL << 31); constexpr int32_t INF = INT_MAX >> 1; constexpr ll MINF = 1LL << 40; constexpr ld DINF = std::numeric_limits::infinity(); constexpr int32_t MODD = 1000000007; constexpr int32_t MOD = 998244353; constexpr ld EPS = 1e-9; constexpr ld PI = 3.1415926535897932; const ll four[] = {0, 1, 0, -1, 0}; const ll eight[] = {0, 1, 1, 0, -1, -1, 1, -1, 0}; template bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } else return false; } template bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } else return false; } template ll sum(const T &a) { return accumulate(std::begin(a), std::end(a), 0LL); } template ld dsum(const T &a) { return accumulate(std::begin(a), std::end(a), 0.0L); } template auto min(const T &a) { return *min_element(std::begin(a), std::end(a)); } template auto max(const T &a) { return *max_element(std::begin(a), std::end(a)); } #line 1 "/root/AtCoder/Halc-Library/Template/Macro.hpp" #define _overload3(_1, _2, _3, name, ...) name #define _overload4(_1, _2, _3, _4, name, ...) name #define _rep1(i, n) for (int64_t i = 0; i < (n); i++) #define _rep2(i, a, b) for (int64_t i = (a); i < (b); i++) #define _rep3(i, a, b, c) for (int64_t i = (a); i < (b); i += (c)) #define rep(...) _overload4(__VA_ARGS__, _rep3, _rep2, _rep1)(__VA_ARGS__) #define _rrep1(i, n) for (int64_t i = (n) - 1; i >= 0; i--) #define _rrep2(i, a, b) for (int64_t i = (b) - 1; i >= (a); i--) #define rrep(...) _overload3(__VA_ARGS__, _rrep2, _rrep1)(__VA_ARGS__) #define each(i, ...) for (auto&& i : __VA_ARGS__) #define all(i) std::begin(i), std::end(i) #define rall(i) std::rbegin(i), std::rend(i) #define len(x) ((int64_t)(x).size()) #define fi first #define se second #define uniq(x) x.erase(unique(all(x)), std::end(x)) #define vec(type, name, ...) vector name(__VA_ARGS__); #define vv(type, name, h, ...) std::vector> name(h, std::vector(__VA_ARGS__)); #define INT(...) int32_t __VA_ARGS__; in(__VA_ARGS__) #define LL(...) int64_t __VA_ARGS__; in(__VA_ARGS__) #define ULL(...) uint64_t __VA_ARGS__; in(__VA_ARGS__) #define STR(...) std::string __VA_ARGS__; in(__VA_ARGS__) #define CHR(...) char __VA_ARGS__; in(__VA_ARGS__) #define LD(...) long double __VA_ARGS__; in(__VA_ARGS__) #define VEC(type, name, size) std::vector name(size); in(name) #define VV(type, name, h, w) std::vector> name(h, std::vector(w)); in(name) #line 4 "/root/AtCoder/Halc-Library/Math/ModCombination.hpp" template struct ModCombination { std::vector fact = {1}, rev{1}; ModCombination(uint32_t sz = 0) { fact.reserve(sz+1); rev.reserve(sz+1); } void resize(uint32_t sz) { sz++; if (fact.size() >= sz) return; uint32_t before = fact.size(); fact.resize(sz); rev.resize(sz); for (uint32_t i = before; i < sz; i++) { fact[i] = fact[i - 1] * i; rev[i] = rev[i - 1] / i; } } T comb(int32_t n, int32_t k) { if (n < 0 || k < 0 || n < k) return 0; resize(n); return fact[n] * rev[n - k] * rev[k]; } T perm(int32_t n, int32_t k) { if (n < 0 || k < 0 || n < k) return 0; resize(n); return fact[n] * rev[n - k]; } T multi_comb(int32_t n, int32_t k) { if (k == 0) return 1; return comb(n + k - 1, k); } }; #line 3 "main.cpp" #line 2 "fps/ntt-friendly-fps.hpp" #line 2 "ntt/ntt.hpp" template struct NTT { static constexpr uint32_t get_pr() { uint32_t _mod = mint::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; uint32_t _pr = 2; while (1) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; while (b) { if (b & 1) r = r * a % _mod; a = a * a % _mod; b >>= 1; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr uint32_t mod = mint::get_mod(); static constexpr uint32_t pr = get_pr(); static constexpr int level = __builtin_ctzll(mod - 1); mint dw[level], dy[level]; void setwy(int k) { mint w[level], y[level]; w[k - 1] = mint(pr).pow((mod - 1) / (1 << k)); y[k - 1] = w[k - 1].inverse(); for (int i = k - 2; i > 0; --i) w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1]; dw[1] = w[1], dy[1] = y[1], dw[2] = w[2], dy[2] = y[2]; for (int i = 3; i < k; ++i) { dw[i] = dw[i - 1] * y[i - 2] * w[i]; dy[i] = dy[i - 1] * w[i - 2] * y[i]; } } NTT() { setwy(level); } void fft4(vector &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } if (k & 1) { int v = 1 << (k - 1); for (int j = 0; j < v; ++j) { mint ajv = a[j + v]; a[j + v] = a[j] - ajv; a[j] += ajv; } } int u = 1 << (2 + (k & 1)); int v = 1 << (k - 2 - (k & 1)); mint one = mint(1); mint imag = dw[1]; while (v) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = j1 + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3; } } // jh >= 1 mint ww = one, xx = one * dw[2], wx = one; for (int jh = 4; jh < u;) { ww = xx * xx, wx = ww * xx; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww, t3 = a[j2 + v] * wx; mint t0p2 = t0 + t2, t1p3 = t1 + t3; mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag; a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3; a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3; } xx *= dw[__builtin_ctzll((jh += 4))]; } u <<= 2; v >>= 2; } } void ifft4(vector &a, int k) { if ((int)a.size() <= 1) return; if (k == 1) { mint a1 = a[1]; a[1] = a[0] - a[1]; a[0] = a[0] + a1; return; } int u = 1 << (k - 2); int v = 1; mint one = mint(1); mint imag = dy[1]; while (u) { // jh = 0 { int j0 = 0; int j1 = v; int j2 = v + v; int j3 = j2 + v; for (; j0 < v; ++j0, ++j1, ++j2, ++j3) { mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag; a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3; a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3; } } // jh >= 1 mint ww = one, xx = one * dy[2], yy = one; u <<= 2; for (int jh = 4; jh < u;) { ww = xx * xx, yy = xx * imag; int j0 = jh * v; int je = j0 + v; int j2 = je + v; for (; j0 < je; ++j0, ++j2) { mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v]; mint t0p1 = t0 + t1, t2p3 = t2 + t3; mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy; a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww; a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww; } xx *= dy[__builtin_ctzll(jh += 4)]; } u >>= 4; v <<= 2; } if (k & 1) { u = 1 << (k - 1); for (int j = 0; j < u; ++j) { mint ajv = a[j] - a[j + u]; a[j] += a[j + u]; a[j + u] = ajv; } } } void ntt(vector &a) { if ((int)a.size() <= 1) return; fft4(a, __builtin_ctz(a.size())); } void intt(vector &a) { if ((int)a.size() <= 1) return; ifft4(a, __builtin_ctz(a.size())); mint iv = mint(a.size()).inverse(); for (auto &x : a) x *= iv; } vector multiply(const vector &a, const vector &b) { int l = a.size() + b.size() - 1; if (min(a.size(), b.size()) <= 40) { vector s(l); for (int i = 0; i < (int)a.size(); ++i) for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j]; return s; } int k = 2, M = 4; while (M < l) M <<= 1, ++k; setwy(k); vector s(M); for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i]; fft4(s, k); if (a.size() == b.size() && a == b) { for (int i = 0; i < M; ++i) s[i] *= s[i]; } else { vector t(M); for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i]; fft4(t, k); for (int i = 0; i < M; ++i) s[i] *= t[i]; } ifft4(s, k); s.resize(l); mint invm = mint(M).inverse(); for (int i = 0; i < l; ++i) s[i] *= invm; return s; } void ntt_doubling(vector &a) { int M = (int)a.size(); auto b = a; intt(b); mint r = 1, zeta = mint(pr).pow((mint::get_mod() - 1) / (M << 1)); for (int i = 0; i < M; i++) b[i] *= r, r *= zeta; ntt(b); copy(begin(b), end(b), back_inserter(a)); } }; #line 2 "fps/formal-power-series.hpp" template struct FormalPowerSeries : vector { using vector::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } // 前 sz 項を取ってくる。sz に足りない項は 0 埋めする FPS pre(int sz) const { FPS ret(begin(*this), begin(*this) + min((int)this->size(), sz)); if ((int)ret.size() < sz) ret.resize(sz); return ret; } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert(!(*this).empty() && (*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template void *FormalPowerSeries::ntt_ptr = nullptr; /** * @brief 多項式/形式的冪級数ライブラリ * @docs docs/fps/formal-power-series.md */ #line 5 "fps/ntt-friendly-fps.hpp" template void FormalPowerSeries::set_fft() { if (!ntt_ptr) ntt_ptr = new NTT; } template FormalPowerSeries& FormalPowerSeries::operator*=( const FormalPowerSeries& r) { if (this->empty() || r.empty()) { this->clear(); return *this; } set_fft(); auto ret = static_cast*>(ntt_ptr)->multiply(*this, r); return *this = FormalPowerSeries(ret.begin(), ret.end()); } template void FormalPowerSeries::ntt() { set_fft(); static_cast*>(ntt_ptr)->ntt(*this); } template void FormalPowerSeries::intt() { set_fft(); static_cast*>(ntt_ptr)->intt(*this); } template void FormalPowerSeries::ntt_doubling() { set_fft(); static_cast*>(ntt_ptr)->ntt_doubling(*this); } template int FormalPowerSeries::ntt_pr() { set_fft(); return static_cast*>(ntt_ptr)->pr; } template FormalPowerSeries FormalPowerSeries::inv(int deg) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (int)this->size(); FormalPowerSeries res(deg); res[0] = {mint(1) / (*this)[0]}; for (int d = 1; d < deg; d <<= 1) { FormalPowerSeries f(2 * d), g(2 * d); for (int j = 0; j < min((int)this->size(), 2 * d); j++) f[j] = (*this)[j]; for (int j = 0; j < d; j++) g[j] = res[j]; f.ntt(); g.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = 0; j < d; j++) f[j] = 0; f.ntt(); for (int j = 0; j < 2 * d; j++) f[j] *= g[j]; f.intt(); for (int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res.pre(deg); } template FormalPowerSeries FormalPowerSeries::exp(int deg) const { using fps = FormalPowerSeries; assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = this->size(); fps inv; inv.reserve(deg + 1); inv.push_back(mint(0)); inv.push_back(mint(1)); auto inplace_integral = [&](fps& F) -> void { const int n = (int)F.size(); auto mod = mint::get_mod(); while ((int)inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), mint(0)); for (int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](fps& F) -> void { if (F.empty()) return; F.erase(begin(F)); mint coeff = 1, one = 1; for (int i = 0; i < (int)F.size(); i++) { F[i] *= coeff; coeff += one; } }; fps b{1, 1 < (int)this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for (int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); y.ntt(); z1 = z2; fps z(m); for (int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; z.intt(); fill(begin(z), begin(z) + m / 2, mint(0)); z.ntt(); for (int i = 0; i < m; ++i) z[i] *= -z1[i]; z.intt(); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); z2.ntt(); fps x(begin(*this), begin(*this) + min(this->size(), m)); x.resize(m); inplace_diff(x); x.push_back(mint(0)); x.ntt(); for (int i = 0; i < m; ++i) x[i] *= y[i]; x.intt(); x -= b.diff(); x.resize(2 * m); for (int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = mint(0); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; x.intt(); x.pop_back(); inplace_integral(x); for (int i = m; i < min(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, mint(0)); x.ntt(); for (int i = 0; i < 2 * m; ++i) x[i] *= y[i]; x.intt(); b.insert(end(b), begin(x) + m, end(x)); } return fps{begin(b), begin(b) + deg}; } /** * @brief NTT mod用FPSライブラリ * @docs docs/fps/ntt-friendly-fps.md */ #line 2 "modint/modint.hpp" template struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+() const { return ModInt(*this); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt(t); return (is); } int get() const { return x; } static constexpr int get_mod() { return mod; } }; /** * @brief modint */ using mint=ModInt; ModCombination cb; using fps = FormalPowerSeries; void solve() { LL(N,K); VEC(ll,A,N); vec(mint,memo,K+1); mint ans=0; cb.resize(K+100); rep(i,1,K+1){ ll g=gcd(i,K); if(g!=i){ ans+=memo[g]; continue; } ll backet=K/g; vl cnt(g+1); rep(j,N){ cnt[min(g,A[j]/backet)]++; } fps s={cb.fact[g]}; fps now={}; now.reserve(g+1); rep(j,g+1){ now.push_back(cb.rev[j]); s*=now.pow(cnt[j],g+1); while(len(s)>g+1)s.pop_back(); } ans+=s[g]; memo[g]=s[g]; } out(ans/K); } int main() { solve(); } /*---------------------✂キリトリ線✂----------------------*\ | Coding by hirayuu_At. | | | | ( ゚д゚) | | _(__つ/ ̄ ̄ ̄/_ ∧∧ | | \/ WA / /⌒ヽ) | |  ̄ ̄ ̄ /\ i三 ∪ | | . ∵ ./ ./| 〇三 | | | ∴ \/ / (/~∪ | | (ノ゚Д゚)ノ |/ 三三 終 | | / / 三三 制作・著作 | |  ̄ ̄ ̄ ̄ ̄ ̄ 三三三 ━━━━━━━━━━ | | ⒽⒶⓁⒸ | \*-----------------------✂キリトリ線✂--------------------*/